skip to main content


Search for: All records

Award ID contains: 1945332

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Micromobility, such as electric scooters and electric bikes—an estimated US$300 billion global market by 2030—will accelerate electrification efforts and fundamentally change urban mobility patterns. However, the impacts of micromobility adoption on traffic congestion and sustainability remain unclear. Here we leverage advances in mobile geofencing and high-resolution data to study the effects of a policy intervention, which unexpectedly banned the use of scooters during evening hours with remote shutdown, guaranteeing near perfect compliance. We test theories of habit discontinuity to provide statistical identification for whether micromobility users substitute scooters for cars. Evidence from a natural experiment in a major US city shows increases in travel time of 9–11% for daily commuting and 37% for large events. Given the growing popularity of restrictions on the use of micromobility devices globally, cities should expect to see trade-offs between micromobility restrictions designed to promote public safety and increased emissions associated with heightened congestion.

     
    more » « less
  2. Abstract

    Problems of poor network interoperability in electric vehicle (EV) infrastructure, where data about real-time usage or consumption is not easily shared across service providers, has plagued the widespread analysis of energy used for transportation. In this article, we present a high-resolution dataset of real-time EV charging transactions resolved to the nearest second over a one-year period at a multi-site corporate campus. This includes 105 charging stations across 25 different facilities operated by a single firm in the U.S. Department of Energy Workplace Charging Challenge. The high-resolution data has 3,395 real-time transactions and 85 users with both paid and free sessions. The data has been expanded for re-use such as identifying charging behaviour and segmenting user groups by frequency of usage, stage of adoption, and employee type. Potential applications include but are not limited to simulating and parameterizing energy demand models; investigating flexible charge scheduling and optimal power flow problems; characterizing transportation emissions and electric mobility patterns at high temporal resolution; and evaluating characteristics of early adopters and lead user innovation.

     
    more » « less
  3. Free, publicly-accessible full text available December 1, 2024
  4. Association for the Advancement of Artificial Intelligence (Ed.)
    Given the heightened global awareness and attention to the negative externalities of plastics use, many state and local governments are considering legislation that will limit single-use plastics for consumers and retailers under extended producer responsibility laws. Considering the growing momentum of these climate regulations globally, there is a need for reliable and cost-effective measures of the public response to this rulemaking for inference and prediction. Automated computational approaches such as generative AI could enable real-time discovery of consumer preferences for regulations but have yet to see broad adoption in this domain due to concerns about evaluation costs and reliability across large-scale social data. In this study, we leveraged the zero and few-shot learning capabilities of GPT-4 to classify public sentiment towards regulations with increasing complexity in expert prompting. With a zero-shot approach, we achieved a 92% F1 score (s.d. 1%) and 91% accuracy (s.d. 1%), which resulted in three orders of magnitude lower research evaluation cost at 0.138 pennies per observation. We then use this model to analyze 5,132 tweets related to the policy process of the California SB-54 bill, which mandates user fees and limits plastic packaging. The policy study reveals a 12.4% increase in opposing public sentiment immediately after the bill was enacted with no significant changes earlier in the policy process. These findings shed light on the dynamics of public engagement with lower cost models for research evaluation. We find that public opposition to single-use plastics regulation becomes evident in social data only when a bill is effectively enacted. 
    more » « less
    Free, publicly-accessible full text available October 25, 2024
  5. Dean, Nicky (Ed.)
    Evidence from a policy experiment shows that public safety bans on electric scooters and electric bikes can generate unintended traffic congestion in city centres. The studied ban is found to increase travel times by 9–11% for daily evening commutes and by 37% following stadium events. 
    more » « less
  6. In seeking to understand how to protect the public information sphere from corruption, researchers understandably focus on dysfunction. However, parts of the public information ecosystem function very well, and understanding this as well will help in protecting and developing existing strengths. Here, we address this gap, focusing on public engagement with high-quality science-based information, consensus reports of the National Academies of Science, Engineering, and Medicine (NASEM). Attending to public use is important to justify public investment in producing and making freely available high-quality, scientifically based reports. We deploy Bidirectional Encoder Representations from Transformers (BERT), a high-performing, supervised machine learning model, to classify 1.6 million comments left by US downloaders of National Academies reports responding to a prompt asking how they intended to use the report. The results provide detailed, nationwide evidence of how the public uses open access scientifically based information. We find half of reported use to be academic—research, teaching, or studying. The other half reveals adults across the country seeking the highest-quality information to improve how they do their job, to help family members, to satisfy their curiosity, and to learn. Our results establish the existence of demand for high-quality information by the public and that such knowledge is widely deployed to improve provision of services. Knowing the importance of such information, policy makers can be encouraged to protect it. 
    more » « less
  7. Kitamura, Yoshifumi ; Quigley, Aaron ; Isbister, Katherine ; Igarashi, Takeo (Ed.)
    The advent of larger machine learning (ML) models have improved state-of-the-art (SOTA) performance in various modeling tasks, ranging from computer vision to natural language. As ML models continue increasing in size, so does their respective energy consumption and computational requirements. However, the methods for tracking, reporting, and comparing energy consumption remain limited. We present EnergyVis, an interactive energy consumption tracker for ML models. Consisting of multiple coordinated views, EnergyVis enables researchers to interactively track, visualize and compare model energy consumption across key energy consumption and carbon footprint metrics (kWh and CO2), helping users explore alternative deployment locations and hardware that may reduce carbon footprints. EnergyVis aims to raise awareness concerning computational sustainability by interactively highlighting excessive energy usage during model training; and by providing alternative training options to reduce energy usage. 
    more » « less