Abstract Recent advances in nanotechnology have enabled rapid progress in many areas of biomedical research, including drug delivery, targeted therapies, imaging, and sensing. The emerging field of DNA nanotechnology, in which oligonucleotides are designed to self‐assemble into programmable 2D and 3D nanostructures, offers great promise for further advancements in biomedicine. DNA nanostructures present highly addressable and functionally diverse platforms for biological applications due to their ease of construction, controllable architecture and size/shape, and multiple avenues for chemical modification. Both supramolecular and covalent modification with small molecules and polymers have been shown to expand or enhance the functions of DNA nanostructures in biological contexts. These alterations include the addition of small molecule, protein, or nucleic acid moieties that enable structural stability under physiological conditions, more efficient cellular uptake and targeting, delivery of various molecular cargos, stimulus‐responsive behaviors, or modulation of a host immune response. Herein, various types of DNA nanostructure modifications and their functional consequences are examined, followed by a brief discussion of the future opportunities for functionalized DNA nanostructures as well as the barriers that must be overcome before their translational use. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in BiologyTherapeutic Approaches and Drug Discovery > Emerging TechnologiesBiology‐Inspired Nanomaterials > Nucleic Acid‐Based Structures 
                        more » 
                        « less   
                    
                            
                            Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications
                        
                    
    
            Abstract Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under:Therapeutic Approaches and Drug Discovery > Emerging TechnologiesTherapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2004305
- PAR ID:
- 10377461
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- WIREs Nanomedicine and Nanobiotechnology
- Volume:
- 15
- Issue:
- 3
- ISSN:
- 1939-5116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Vaccines are considered one of the most significant medical advancements in human history, as they have prevented hundreds of millions of deaths since their discovery; however, modern travel permits disease spread at unprecedented rates, and vaccine shortcomings like thermal sensitivity and required booster shots have been made evident by the COVID‐19 pandemic. Approaches to overcoming these issues appear promising via the integration of vaccine technology with biomaterials, which offer sustained‐release properties and preserve proteins, prevent conformational changes, and enable storage at room temperature. Sustained release and thermal stabilization of therapeutic biomacromolecules is an emerging area that integrates material science, chemistry, immunology, nanotechnology, and pathology to investigate different biocompatible materials. Biomaterials, including natural sugar polymers, synthetic polyesters produced from biologically derived monomers, hydrogel blends, protein–polymer blends, and metal–organic frameworks, have emerged as early players in the field. This overview will focus on significant advances of sustained release biomaterial in the context of vaccines against infectious disease and the progress made towards thermally stable “single‐shot” formulations. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Diseasemore » « less
- 
            Abstract While plasma concentration kinetics has traditionally been the predictor of drug pharmacological effects, it can occasionally fail to represent kinetics at the site of action, particularly for solid tumors. This is especially true in the case of delivery of therapeutic macromolecules (drug‐loaded nanomaterials or monoclonal antibodies), which can experience challenges to effective delivery due to particle size‐dependent diffusion barriers at the target site. As a result, disparity between therapeutic plasma kinetics and kinetics at the site of action may exist, highlighting the importance of target site concentration kinetics in determining the pharmacodynamic effects of macromolecular therapeutic agents. Assessment of concentration kinetics at the target site has been facilitated by non‐invasive in vivo imaging modalities. This allows for visualization and quantification of the whole‐body disposition behavior of therapeutics that is essential for a comprehensive understanding of their pharmacokinetics and pharmacodynamics. Quantitative non‐invasive imaging can also help guide the development and parameterization of mathematical models for descriptive and predictive purposes. Here, we present a review of the application of state‐of‐the‐art imaging modalities for quantitative pharmacological evaluation of therapeutic nanoparticles and monoclonal antibodies, with a focus on their integration with mathematical models, and identify challenges and opportunities. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic DiseaseDiagnostic Tools > in vivo Nanodiagnostics and ImagingNanotechnology Approaches to Biology > Nanoscale Systems in Biologymore » « less
- 
            The porosity, order, biocompatibility, and chirality of protein crystals has motivated interest from diverse research domains including materials science, biotechnology, and medicine. Porous protein crystals have the unusual potential to organize guest molecules within highly ordered scaffolds, enabling applications ranging from biotemplating and catalysis to biosensing and drug delivery. Significant research has therefore been directed toward characterizing protein crystal materials in hopes of optimizing crystallization, scaffold stability, and application efficacy. In this overview article, we describe recent progress in the field of protein crystal materials with special attention given to applications in nanomedicine and nanobiotechnology. This article is categorized under:Biology‐Inspired Nanomaterials > Protein and Virus‐Based StructuresTherapeutic Approaches and Drug Discovery > Emerging TechnologiesToxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterialsmore » « less
- 
            Abstract Interfacial self‐assembly describes the directed organization of molecules and colloids at phase boundaries. Believed to be fundamental to the inception of primordial life, interfacial assembly is exploited by a myriad of eukaryotic and prokaryotic organisms to execute physiologic activities and maintain homeostasis. Inspired by these natural systems, chemists, engineers, and materials scientists have sought to harness the thermodynamic equilibria at phase boundaries to create multi‐dimensional, highly ordered, and functional nanomaterials. Recent advances in our understanding of the biophysical principles guiding molecular assembly at gas–solid, gas–liquid, solid–liquid, and liquid–liquid interphases have enhanced the rational design of functional bio‐nanomaterials, particularly in the fields of biosensing, bioimaging and biotherapy. Continued development of non‐canonical building blocks, paired with deeper mechanistic insights into interphase self‐assembly, holds promise to yield next generation interfacial bio‐nanomaterials with unique, and perhaps yet unrealized, properties. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in BiologyTherapeutic Approaches and Drug Discovery > Emerging Technologiesmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
