skip to main content

Title: Sea level extremes and compounding marine heatwaves in coastal Indonesia
Abstract

Low-lying island nations like Indonesia are vulnerable to sea level Height EXtremes (HEXs). When compounded by marine heatwaves, HEXs have larger ecological and societal impact. Here we combine observations with model simulations, to investigate the HEXs and Compound Height-Heat Extremes (CHHEXs) along the Indian Ocean coast of Indonesia in recent decades. We find that anthropogenic sea level rise combined with decadal climate variability causes increased occurrence of HEXs during 2010–2017. Both HEXs and CHHEXs are driven by equatorial westerly and longshore northwesterly wind anomalies. For most HEXs, which occur during December-March, downwelling favorable northwest monsoon winds are enhanced but enhanced vertical mixing limits surface warming. For most CHHEXs, wind anomalies associated with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña weaken the southeasterlies and cooling from coastal upwelling during May-June and November-December. Our findings emphasize the important interplay between anthropogenic warming and climate variability in affecting regional extremes.

Authors:
; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10377463
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. The southeast Indian Ocean (SEIO) exhibits decadal variability in sea surface temperature (SST) with amplitudes of ~0.2–0.3 K and covaries with the central Pacific ( r = −0.63 with Niño-4 index for 1975–2010). In this study, the generation mechanisms of decadal SST variability are explored using an ocean general circulation model (OGCM), and its impact on atmosphere is evaluated using an atmospheric general circulation model (AGCM). OGCM experiments reveal that Pacific forcing through the Indonesian Throughflow explains <20% of the total SST variability, and the contribution of local wind stress is also small. These wind-forced anomalies mainly occur near the Western Australian coast. The majority of SST variability is attributed to surface heat fluxes. The reduced upward turbulent heat flux ( Q T ; latent plus sensible heat flux), owing to decreased wind speed and anomalous warm, moist air advection, is essential for the growth of warm SST anomalies (SSTAs). The warming causes reduction of low cloud cover that increases surface shortwave radiation (SWR) and further promotes the warming. However, the resultant high SST, along with the increased wind speed in the offshore area, enhances the upward Q T and begins to cool the ocean. Warm SSTAs co-occur with cyclonicmore »low-level wind anomalies in the SEIO and enhanced rainfall over Indonesia and northwest Australia. AGCM experiments suggest that although the tropical Pacific SST has strong effects on the SEIO region through atmospheric teleconnection, the cyclonic winds and increased rainfall are mainly caused by the SEIO warming through local air–sea interactions.« less
  2. Abstract

    In this study, the Indian Ocean upper-ocean variability associated with the subtropical Indian Ocean dipole (SIOD) is investigated. We find that the SIOD is associated with a prominent southwest–northeast sea level anomaly (SLA) dipole over the western-central south Indian Ocean, with the north pole located in the Seychelles–Chagos thermocline ridge (SCTR) and the south pole at southeast of Madagascar, which is different from the distribution of the sea surface temperature anomaly (SSTA). While the thermocline depth and upper-ocean heat content anomalies mirror SLAs, the air–sea CO2 flux anomalies associated with SIOD are controlled by SSTA. In the SCTR region, the westward propagation of oceanic Rossby waves generated by anomalous winds over the eastern tropical Indian Ocean is the major cause for the SLAs, with cyclonic wind causing negative SLAs during positive SIOD (pSIOD). Local wind forcing is the primary driver for the SLAs southeast of Madagascar, with anticyclonic winds causing positive SLAs. Since the SIOD is correlated with ENSO, the relative roles of the SIOD and ENSO are examined. We find that while ENSO can induce significant SLAs in the SCTR region through an atmospheric bridge, it has negligible impact on the SLA to the southeast of Madagascar. Bymore »contrast, the SIOD with ENSO influence removed is associated with an opposite SLA in the SCTR and southeast of Madagascar, corresponding to the SLA dipole identified above. A new subtropical dipole mode index (SDMI) is proposed, which is uncorrelated with ENSO and thus better represents the pure SIOD effect.

    « less
  3. El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the westernmore »Pacific, suggestive of ocean–atmosphere coupling.

    « less
  4. Abstract

    The relationship between the southern annular mode (SAM) and Southern Ocean mixed layer depth (MLD) is investigated using a global 0.1° resolution ocean model. The SAM index is defined as the principal component time series of the leading empirical orthogonal function of extratropical sea level pressure from September to December, when the zonally symmetric SAM feature is most prominent. Following positive phases of the SAM, anomalous deep mixed layers occur in the subsequent fall season, starting in May, particularly in the southeast Pacific. Composite analyses reveal that for positive SAM phases enhanced surface cooling caused by anomalously strong westerlies weakens the stratification of the water column, leading to deeper mixed layers during spring when the SAM signal is at its strongest. During the subsequent summer, the surface warms and the mixed layer shoals. However, beneath the warm surface layer, anomalously weak stratification persists throughout the summer and into fall. When the surface cools again during fall, the mixed layer readily deepens due to this weak interior stratification, a legacy from the previous springtime conditions. Therefore, the spring SAM–fall MLD relationship is interpreted here as a manifestation of reemergence of interior water mass anomalies. The opposite occurs after negative phasesmore »of the SAM, with anomalously shallow mixed layers resulting. Additional analyses reveal that for the MLD region in the southeast Pacific, the effects of salinity variations and Ekman heat advection are negligible, although Ekman heat transport may play an important role in other regions where mode water is formed, such as south of Australia and in the Indian Ocean.

    « less
  5. ABSTRACT Previous studies linked the increase of the middle and low reaches of the Yangtze River (MLRYR) rainfall to tropical Indian Ocean warming during extreme El Niños’ (e.g., 1982/83 and 1997/98 extreme El Niños) decaying summer. This study finds the linkage to be different for the recent 2015/16 extreme El Niño’s decaying summer, during which the above-normal rainfalls over MLRYR and northern China are respectively linked to southeastern Indian Ocean warming and western tropical Indian Ocean cooling in sea surface temperatures (SSTs). The southeastern Indian Ocean warming helps to maintain the El Niño–induced anomalous lower-level anticyclone over the western North Pacific Ocean and southern China, which enhances moisture transport to increase rainfall over MLRYR. The western tropical Indian Ocean cooling first enhances the rainfall over central-northern India through a regional atmospheric circulation, the latent heating of which further excites a midlatitude Asian teleconnection pattern (part of circumglobal teleconnection) that results in an above-normal rainfall over northern China. The western tropical Indian Ocean cooling during the 2015/16 extreme El Niño is contributed by the increased upward latent heat flux anomalies associated with enhanced surface wind speeds, opposite to the earlier two extreme El Niños.