Abstract El Niño–Southern Oscillation (ENSO) is an important but not the only source of interannual variability over the Indo–western Pacific. Non-ENSO forced variability in the region has received recent attention because of the implications for rainy-season prediction. Using a 35-member CESM1 Large Ensemble (CESM-LE) and 30 CMIP6 models, this study shows that the ensemble means project intensified interannual variability for precipitation, low-level winds, and sea level pressure under global warming, associated with the enhanced large-scale anomalous anticyclone (AAC) over the tropical northwestern (NW) Pacific after the ENSO signal is removed. A decomposition based on the column water vapor budget reveals that enhanced precipitation variability is due to the increased background specific humidity. The resultant anomalous diabatic heating intensifies the AAC, which further strengthens the precipitation anomalies. Over the tropical NW Pacific, the wind-induced evaporative cooling on the southeastern flank of the AAC is countered by the increased shortwave radiation due to the strengthened precipitation reduction. Tropospheric temperature anomalies in the ensemble means show no significant change, suggesting no apparent change of the interbasin positive feedback between the AAC and northern Indian Ocean SST. Intermodel analysis based on CMIP6 reveals that models with a larger increase in ENSO-unrelated precipitation variability over the NW Pacific are associated with stronger background warming in the eastern equatorial Pacific, due to the modulated Walker and Hadley circulations. 
                        more » 
                        « less   
                    
                            
                            Indian Ocean Warming Trend Reduces Pacific Warming Response to Anthropogenic Greenhouse Gases: An Interbasin Thermostat Mechanism
                        
                    
    
            Abstract A greater warming trend of sea surface temperature in the tropical Indian Ocean than in the tropical Pacific is a robust feature found in various observational data sets. Yet this interbasin warming contrast is not present in climate models. Here we investigate the impact of tropical Indian Ocean warming on the tropical Pacific response to anthropogenic greenhouse gas warming by analyzing results from coupled model pacemaker experiments. We find that warming in the Indian Ocean induces local negative sea level pressure anomalies, which extend to the western tropical Pacific, strengthening the zonal sea level pressure gradient and easterly trades in the tropical Pacific. The enhanced trade winds reduce sea surface temperature in the eastern tropical Pacific by increasing equatorial upwelling and evaporative cooling, which offset the greenhouse gas warming. This result suggests an interbasin thermostat mechanism, through which the Indian Ocean exerts its influence on the Pacific response to anthropogenic greenhouse gas warming. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10375332
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 19
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 10882-10890
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Regional ocean–atmospheric interactions in the summer tropical Indo–northwest Pacific region are investigated using a tropical Pacific Ocean–global atmosphere pacemaker experiment with a coupled ocean–atmospheric model (cPOGA) and a parallel atmosphere model simulation (aPOGA) forced with sea surface temperature (SST) variations from cPOGA. Whereas the ensemble mean features pronounced influences of El Niño–Southern Oscillation (ENSO), the ensemble spread represents internal variability unrelated to ENSO. By comparing the aPOGA and cPOGA, this study examines the effect of the ocean–atmosphere coupling on the ENSO-unrelated variability. In boreal summer, ocean–atmosphere coupling induces local positive feedback to enhance the variance and persistence of the sea level pressure and rainfall variability over the northwest Pacific and likewise induces local negative feedback to suppress the variance and persistence of the sea level pressure and rainfall variability over the north Indian Ocean. Anomalous surface heat fluxes induced by internal atmosphere variability cause SST to change, and SST anomalies feed back onto the atmosphere through atmospheric convection. The local feedback is sensitive to the background winds: positive under the mean easterlies and negative under the mean westerlies. In addition, north Indian Ocean SST anomalies reinforce the low-level anomalous circulation over the northwest Pacific through atmospheric Kelvin waves. This interbasin interaction, along with the local feedback, strengthens both the variance and persistence of atmospheric variability over the northwest Pacific. The response of the regional Indo–northwest Pacific mode to ENSO and influences on the Asian summer monsoon are discussed.more » « less
- 
            Abstract The surface air temperature (SAT) over the Sahara Desert has increased at a much faster rate than average tropical land in recent decades. This study examines the relative roles of anthropogenic greenhouse gas (GHG) forcing and sea surface temperature (SST) change in the observed Saharan temperature increase during boreal warm season from 1979 to 2020 using atmospheric general circulation model simulations. It is found that the SST forcing dominates the observed Saharan warming. Further analysis shows that the warming ocean forces the Saharan SAT increase by moving more energy to the Sahara Desert, while the water vapor feedback plays a secondary role. The reason for the stronger Saharan warming than the average tropical land given the same SST forcing is also explored. We found that the largest contributor to the warming contrast is the lapse‐rate feedback, which is attributable to the difference in the vertical warming profile.more » « less
- 
            Abstract Understanding the impact of the Indian Ocean Dipole (IOD) on El Niño-Southern Oscillation (ENSO) is important for climate prediction. By analyzing observational data and performing Indian and Pacific Ocean pacemaker experiments using a state-of-the-art climate model, we find that a positive IOD (pIOD) can favor both cold and warm sea surface temperature anomalies (SSTA) in the tropical Pacific, in contrast to the previously identified pIOD-El Niño connection. The diverse impacts of the pIOD on ENSO are related to SSTA in the Seychelles-Chagos thermocline ridge (SCTR; 60°E-85°E and 7°S-15°S) as part of the warm pole of the pIOD. Specifically, a pIOD with SCTR warming can cause warm SSTA in the southeast Indian Ocean, which induces La Niña-like conditions in the tropical Pacific through interbasin interaction processes associated with a recently identified climate phenomenon dubbed the “Warm Pool Dipole”. This study identifies a new pIOD-ENSO relationship and examines the associated mechanisms.more » « less
- 
            Abstract The reorganization of the Atlantic meridional overturning circulation (AMOC) is often associated with changes in Earth’s climate. These AMOC changes are communicated to the Indo-Pacific basins via wave processes and induce an overturning circulation anomaly that opposes the Atlantic changes on decadal to centennial time scales. We examine the role of this transient, interbasin overturning response, driven by an AMOC weakening, both in an ocean-only model with idealized geometry and in a coupled CO 2 quadrupling experiment, in which the ocean warms on two distinct time scales: a fast decadal surface warming and a slow centennial subsurface warming. We show that the transient interbasin overturning produces a zonal heat redistribution between the Atlantic and Indo-Pacific basins. Following a weakened AMOC, an anomalous northward heat transport emerges in the Indo-Pacific, which substantially compensates for the Atlantic southward heat transport anomaly. This zonal heat redistribution manifests as a thermal interbasin seesaw between the high-latitude North Atlantic and the subsurface Indo-Pacific and helps to explain why Antarctic temperature records generally show more gradual changes than the Northern Hemisphere during the last glacial period. In the coupled CO 2 quadrupling experiment, we find that the interbasin heat transport due to a weakened AMOC contributes substantially to the slow centennial subsurface warming in the Indo-Pacific, accounting for more than half of the heat content increase and sea level rise. Thus, our results suggest that the transient interbasin overturning circulation is a key component of the global ocean heat budget in a changing climate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
