skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Morphodynamic Hierarchy and the Fabric of the Sedimentary Record
Abstract The low temporal completeness of fluvial strata could indicate that recorded events represent unusual and extreme conditions. However, field observations suggest that preserved strata predominantly record relatively common transport conditions—a paradox termed thestrange ordinarinessof fluvial strata. We theorize that the self‐organization of fluvial systems into a morphodynamic hierarchy that spans bed to basin scales facilitates the preservation of ordinary events in fluvial strata. Using a new probabilistic model and existing field and experimental data sets across these scales, we show that fluvial morphodynamic hierarchy enhances the stratigraphic preservation of medial topography—ordinary events. We show that lower‐order landforms have a higher likelihood of complete preservation when the kinematic rates of evolution of successive levels in the morphodynamic hierarchy are comparable. We highlight how relative changes in kinematic rates of evolution of successive levels in the morphodynamic hierarchy can manifest as major shifts in stratigraphic architecture through Earth history.  more » « less
Award ID(s):
1935669 1935513
PAR ID:
10377472
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
14
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fluvial cross strata are fundamental sedimentary structures that record past flow and sediment transport conditions. Bedform preservation can be significantly influenced by the presence of larger‐scale topographic features that cause spatial gradients in flow. However, our understanding of the controls on cross strata preservation in the presence of a morphodynamic hierarchy is limited. Here, using high‐resolution bathymetry from a physical experiment, we quantify bedform evolution and cross strata preservation in a zone of flow expansion and deceleration. Results show that the size and celerity of superimposed bedforms decreases along the host‐bedform lee slope, leading to a systematic downstream increase in the sediment accumulation rate relative to bedform celerity. This increase in local bedform climb angle results in the preservation of a larger fraction of formative bedforms. Our results highlight the need to revise current paleohydraulic reconstruction models, and demonstrates that fluvial morphodynamic hierarchy is a fundamental determinant of sedimentary strata. 
    more » « less
  2. Abstract A Silurian shift in fluvial stratigraphic architecture, coincident with the appearance of terrestrial vegetation in the fossil record, is traditionally cited as evidence for exclusively shallow, braided planforms in pre‐vegetation rivers. While recent recognition of deep, single‐thread channels in pre‐Silurian strata challenge this paradigm, it is unclear how these rivers maintained stable banks. Here, we reconstruct paleohydraulics and channel planform from fluvial cross‐strata of the 1.2 Ga Stoer Group. These deposits are consistent with deep (4–7 m), low‐sloping rivers (2.7 × 10−4to 4.5 × 10−5), similar in morphometry to modern single‐thread rivers. We show that reconstructed bank shear stresses approximate the cohesion provided by sand‐mud mixtures with 30%–45% mud—consistent with Stoer floodplain facies composition. These results indicate that sediment cohesion from mud alone could have fostered deep, single‐thread, pre‐vegetation rivers. We suggest that the Silurian stratigraphic shift could mark a kinematic change in channel migration rate rather than a diversification of planform. 
    more » « less
  3. Abstract River bedforms and their deposits—fluvial cross strata— respond to floods. However, it is unclear if all floods are equally represented in cross strata. Here, using a series of physical experiments in which bedforms were subjected to equivalent flood magnitudes over varying durations, we demonstrate the existence of a lower bound on flood durations that are represented in cross strata. We show that the scour depths and preserved set thickness are indistinguishable from baseflow conditions when the rising‐limb duration of floods is shorter than the baseflow‐equilibrated bedform turnover timescale—time required to displace the volume of a single bedform at baseflow conditions. In contrast, scour depth and preserved set thickness distributions deviate from baseflow conditions when flood rising‐limb duration exceeds the baseflow‐equilibrated bedform turnover timescale, causing preferential preservation of falling‐limb bedform dynamics. Our work provides a previously unrecognized quantitative bound on flood durations that are represented in fluvial cross strata. 
    more » « less
  4. Theory suggests the possibility for significant deviations between the total pressure (or dynamic pressure) and lithostatic pressure throughout Earth’s crust. Whether such non-lithostatic pressure conditions are recorded and preserved in the rock record remains unresolved, as direct field confirmation is limited, yet the implications for orogenic reconstruction are profound. Here we investigate the Paleogene Tethyan Himalaya fold-thrust belt in Himachal Pradesh, NW India, which is the structurally highest part of the Himalayan orogen and deforms a ~10–15 km thick Neoproterozoic–Cretaceous passive margin stratigraphic section. Field-based kinematic studies demonstrate relatively moderate shortening strain estimates across the Tethyan Himalaya, yet basal Tethyan strata consistently yield elevated pressure-temperature-time (P-T-t) estimates of 7–8 kbar and ~650°C, indicative of deep burial during Himalayan orogeny (25–30 km depths). These P-T-t conditions can be reconciled by: (1) deep Cenozoic burial along cryptic structures and/or significant flattening of the Tethyan strata; (2) basal Tethyan strata recording pre-Himalayan deformation related to Pan-African orogeny; or (3) non-lithostatic pressure conditions (i.e., tectonic overpressure). To test these models, we systematically mapped the Tethyan fold-thrust belt along the Bhaba Pass-Pin Valley transect in NW India, a classic site for stratigraphic, paleontological, paleoenvironmental, and structural reconstructions. We integrate a multi-method approach combining detailed geologic mapping with quantitative analytical techniques (e.g., finite strain analyses, thermometry, thermobarometry, thermochronology, and geochronology) to quantify the magnitude, kinematics, thermal architecture, and timing of regional deformation, metamorphism, and subsequent exhumation of the Tethyan fold-thrust belt. Our preliminary observations refute deep Cenozoic burial of the Tethyan Himalaya, suggesting either the preservation of non-lithostatic pressures in the rock record or relicts of pre-Himalayan metamorphism. Either scenario demonstrates that caution is required in using Himalayan P-T-t estimates to reconstruct the Cenozoic Himalayan orogeny. 
    more » « less
  5. Abstract Fluvial cross strata are depositional products of bedform migration that record formative flow and sediment transport conditions on planetary bodies. Bedform evolution varies with transport stage even under constant flow depths, but our understanding of how prevailing sediment transport conditions affect preserved cross strata is limited. Here, we analyzed experimental bedform evolution and preserved set thickness spanning threshold‐of‐motion to suspension‐dominated transport conditions at multiple equilibrium flow depths. Results show that bedform trough depth and mean preserved set thickness have a parabolic dependence on transport stage, with maximum values observed at intermediate transport stages. Our results indicate that transport stage is a key control on the flow‐depth‐normalized set thickness but set thickness is a poor indicator of flow depth. Thus, the dependence of bedform dimensions on transport stage should be considered in paleohydraulic reconstruction, and the analysis of set thickness may aid in the estimation of ancient fluvial sediment flux. 
    more » « less