skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Fluvial Morphodynamic Hierarchy in Shaping Bedform Deposits
Abstract Fluvial cross strata are fundamental sedimentary structures that record past flow and sediment transport conditions. Bedform preservation can be significantly influenced by the presence of larger‐scale topographic features that cause spatial gradients in flow. However, our understanding of the controls on cross strata preservation in the presence of a morphodynamic hierarchy is limited. Here, using high‐resolution bathymetry from a physical experiment, we quantify bedform evolution and cross strata preservation in a zone of flow expansion and deceleration. Results show that the size and celerity of superimposed bedforms decreases along the host‐bedform lee slope, leading to a systematic downstream increase in the sediment accumulation rate relative to bedform celerity. This increase in local bedform climb angle results in the preservation of a larger fraction of formative bedforms. Our results highlight the need to revise current paleohydraulic reconstruction models, and demonstrates that fluvial morphodynamic hierarchy is a fundamental determinant of sedimentary strata.  more » « less
Award ID(s):
1935669
PAR ID:
10549264
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
20
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract River bedforms and their deposits—fluvial cross strata— respond to floods. However, it is unclear if all floods are equally represented in cross strata. Here, using a series of physical experiments in which bedforms were subjected to equivalent flood magnitudes over varying durations, we demonstrate the existence of a lower bound on flood durations that are represented in cross strata. We show that the scour depths and preserved set thickness are indistinguishable from baseflow conditions when the rising‐limb duration of floods is shorter than the baseflow‐equilibrated bedform turnover timescale—time required to displace the volume of a single bedform at baseflow conditions. In contrast, scour depth and preserved set thickness distributions deviate from baseflow conditions when flood rising‐limb duration exceeds the baseflow‐equilibrated bedform turnover timescale, causing preferential preservation of falling‐limb bedform dynamics. Our work provides a previously unrecognized quantitative bound on flood durations that are represented in fluvial cross strata. 
    more » « less
  2. Abstract Bedform evolution and preserved cross strata are known to respond to floods. However, it is unclear if autogenic dynamics mask the flood signal in bedform evolution and cross strata. To address this, we characterize the temporal structure of autogenic noise in steady‐state bedform evolution in a physical experiment. Results reveal the existence of bedform groups—quasi‐stable collections of bedforms—that migrate at a similar speed as bedforms. We find that bedform and bedform‐group turnover timescales are the key autogenic timescales of bed evolution that set the transition time‐periods between different noise regimes in bedform evolution. Results suggest that bedform‐group turnover timescale sets the lower limit for detecting flood signals in bedform evolution, and floods with duration shorter than bedform turnover timescale can be severely degraded in bedform evolution and cross strata. Our work provides a new framework for interrogating fluvial cross strata for reconstruction of past floods. 
    more » « less
  3. Abstract The low temporal completeness of fluvial strata could indicate that recorded events represent unusual and extreme conditions. However, field observations suggest that preserved strata predominantly record relatively common transport conditions—a paradox termed thestrange ordinarinessof fluvial strata. We theorize that the self‐organization of fluvial systems into a morphodynamic hierarchy that spans bed to basin scales facilitates the preservation of ordinary events in fluvial strata. Using a new probabilistic model and existing field and experimental data sets across these scales, we show that fluvial morphodynamic hierarchy enhances the stratigraphic preservation of medial topography—ordinary events. We show that lower‐order landforms have a higher likelihood of complete preservation when the kinematic rates of evolution of successive levels in the morphodynamic hierarchy are comparable. We highlight how relative changes in kinematic rates of evolution of successive levels in the morphodynamic hierarchy can manifest as major shifts in stratigraphic architecture through Earth history. 
    more » « less
  4. Abstract Fluvial cross strata are depositional products of bedform migration that record formative flow and sediment transport conditions on planetary bodies. Bedform evolution varies with transport stage even under constant flow depths, but our understanding of how prevailing sediment transport conditions affect preserved cross strata is limited. Here, we analyzed experimental bedform evolution and preserved set thickness spanning threshold‐of‐motion to suspension‐dominated transport conditions at multiple equilibrium flow depths. Results show that bedform trough depth and mean preserved set thickness have a parabolic dependence on transport stage, with maximum values observed at intermediate transport stages. Our results indicate that transport stage is a key control on the flow‐depth‐normalized set thickness but set thickness is a poor indicator of flow depth. Thus, the dependence of bedform dimensions on transport stage should be considered in paleohydraulic reconstruction, and the analysis of set thickness may aid in the estimation of ancient fluvial sediment flux. 
    more » « less
  5. Abstract Microbes are known to shape topographies; however, mechanisms of biofilm‐sediment interactions and the dynamic evolution of biofilm‐covered bedforms remain poorly understood. Here, we explore the effects of synthetic biofilms on the geometry and temporal evolution of underwater bedforms through flume experiments. Our results demonstrate that synthetic biofilms can produce sedimentary structures similar to those formed by natural microbes, including wrinkles, pits, flip‐overs, roll‐ups, mat chips, and erosional edges. We observed the formation of wrinkles, a common geological feature, due to the accumulation of sand grains on the biofilms. Furthermore, we demonstrated that biofilms can reduce bed roughness by an order of magnitude in the low flow regime. However, the subsequent biofilm‐sediment interactions can increase local bedform size, forming multi‐scale geometries of bedforms. Our study improves the fundamental understanding of the landscape dynamics of bedforms covered by natural biofilms. 
    more » « less