skip to main content


Title: Forced Oscillation Grid Vulnerability Analysis and Mitigation Using Inverter-Based Resources: Texas Grid Case Study
Forced oscillation events have become a challenging problem with the increasing penetration of renewable and other inverter-based resources (IBRs), especially when the forced oscillation frequency coincides with the dominant natural oscillation frequency. A severe forced oscillation event can deteriorate power system dynamic stability, damage equipment, and limit power transfer capability. This paper proposes a two-dimension scanning forced oscillation grid vulnerability analysis method to identify areas/zones in the system that are critical to forced oscillation. These critical areas/zones can be further considered as effective actuator locations for the deployment of forced oscillation damping controllers. Additionally, active power modulation control through IBRs is also proposed to reduce the forced oscillation impact on the entire grid. The proposed methods are demonstrated through a case study on a synthetic Texas power system model. The simulation results demonstrate that the critical areas/zones of forced oscillation are related to the areas that highly participate in the natural oscillations and the proposed oscillation damping controller through IBRs can effectively reduce the forced oscillation impact in the entire system.  more » « less
Award ID(s):
1839684 1941101
NSF-PAR ID:
10377538
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Energies
Volume:
15
Issue:
8
ISSN:
1996-1073
Page Range / eLocation ID:
2819
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper discusses the challenges faced by electric power systems due to the increasing use of inverter-based renewable energy resources (IBRs) operating in grid-following mode (GFL) and the limited support they provide for the grid’s reliability and stability. With increased IBRs connected to the grid, electric utilities are increasingly requiring IBRs to behave like traditional grid-forming (GFM) synchronous generators to provide support for inertia, frequency, voltage, black start capability, and more. The paper focuses on developing GFM inverter technologies with L, LC, and LCL filters and investigates the performance of combined GFM and GFL inverters with different filtering mechanisms when supplying different types of loads. It also emphasizes achieving voltage controllability at the point of common coupling of the GFM with the rest of an AC system. EMT simulation is utilized to investigate the interaction of combined GFM and GFL inverters with different filtering mechanisms. The research results will assist electric utilities in ensuring the reliability and stability of electric power systems in the future. 
    more » « less
  2. With the increased inverter-based resources (IBRs) connected to the grid, IBR P-Q capability charts are needed, proposed, and developed by the power industry to assure IBR operation efficiency and reliability. This paper presents a comprehensive P-Q capability evaluation for an IBR plant interconnected with the transmission grid. The proposed study considers the impact of different IBR grid-connected filters, IBR vector control implementation in the dq reference frame, and special interconnection nature of IBRs in a plant structure. The models and algorithms developed for the IBR P-Q capability analysis have considered specific IBR constraints that are different from those of a synchronous generator. The paper especially focuses on exploring the P-Q capability characteristics of IBRs and IBR plant at different interconnection points that are important for managing, designing, and controlling IBRs within an IBR plant, and for the development of international standards, such as IEEE P2800, for connecting IBRs to the transmission and distribution grids in a plant structure. 
    more » « less
  3. Abstract

    Understanding power system dynamics is essential for interarea oscillation analysis and the detection of grid instabilities. The FNET/GridEye is a GPS‐synchronized wide‐area frequency measurement network that provides an accurate picture of the normal real‐time operational condition of the power system dynamics, giving rise to new and intricate spatiotemporal patterns of power loads. We propose to model FNET/GridEye grid frequency data from the U.S. Eastern Interconnection with a spatiotemporal statistical model. We predict the frequency data at locations without observations, a critical need during disruption events where measurement data are inaccessible. Spatial information is accounted for either as neighboring measurements in the form of covariates or with a spatiotemporal correlation model captured by a latent Gaussian field. The proposed method is useful in estimating power system dynamic response from limited phasor measurements and holds promise for predicting instability that may lead to undesirable effects such as cascading outages.

     
    more » « less
  4. Distributed generation is gaining greater penetration levels in distribution grids due to government incentives for integrating distributed energy resources (DERs) and DER cost reductions. The frequency response of a grid-connected single inverter changes as other inverters are connected in parallel due to the couplings among grid inductance and/or inverter output filters. The selection of the inverter- or grid-side currents as feedback control signals is then not trivial because each one has tradeoffs. This paper analyses the system stability for multiple parallel- and grid-connected inverters using the inverter- or gridside currents as feedback signals. Modeling of both feedback signals is performed using the current separation technique. Moreover, the stability range for different conditions including active damping is analyzed through the root locus technique. The grid-side current has a wider range of stability, but the inverterside current allows for higher values of the proportional gain near the critical frequency and no extra sensors are needed since measurement of the inverter current is needed for protection in high-power applications. 
    more » « less
  5. This paper progresses on the development of the discrete electromechanical oscillation control (DEOC). The DEOC approach is based on the step-wisely control of electronically-interfaced resources' (EIR) power output and aims to significantly reduce the amplitude of multiple oscillatory modes in power systems. The theoretical formulation of the problem and the proposed solution is described. This work addresses the issues of a nonlinear grid representation and favorable reduction of control actions from EIRs, as well as their impact on the DEOC performance. Simulations on a 9-bus system validate the effectiveness of the proposed control even when highly load scenarios are considered. 
    more » « less