Abstract The Echo Classification from COnvectivity (ECCO) algorithm identifies convective and stratiform types of radar echo in three dimensions. It is based on the calculation of reflectivity texture—a combination of the intensity and the heterogeneity of the radar echoes on each horizontal plane in a 3D Cartesian volume. Reflectivity texture is translated into convectivity, which is designed to be a quantitative measure of the convective nature of each 3D radar grid point. It ranges from 0 (100% stratiform) to 1 (100% convective). By thresholding convectivity, a more traditional qualitative categorization is obtained, which classifies radar echoes as convective, mixed, or stratiform. In contrast to previous algorithms, these echo-type classifications are provided on the full 3D grid of the reflectivity field. The vertically resolved classifications, in combination with temperature data, allow for subclassifications into shallow, mid-, deep, and elevated convective features, and low, mid-, and high stratiform regions—again in three dimensions. The algorithm was validated using datasets collected over the U.S. Great Plains during the PECAN field campaign. An analysis of lightning counts shows ∼90% of lightning occurring in regions classified as convective by ECCO. A statistical comparison of ECCO echo types with the well-established GPM radar precipitation-type categories show 84% (88%) of GPM stratiform (convective) echo being classified as stratiform (convective) or mixed by ECCO. ECCO was applied to radar grids for the continental United States, the United Arab Emirates, Australia, and Europe, illustrating its robustness and adaptability to different radar grid characteristics and climatic regions.
more »
« less
Vertically Resolved Convective–Stratiform Echo-Type Identification and Convectivity Retrieval for Vertically Pointing Radars
Abstract Using data from the airborne HIAPER Cloud Radar (HCR), a partitioning algorithm (ECCO-V) that provides vertically resolved convectivity and convective versus stratiform radar-echo classification is developed for vertically pointing radars. The algorithm is based on the calculation of reflectivity and radial velocity texture fields that measure the horizontal homogeneity of cloud and precipitation features. The texture fields are translated into convectivity, a numerical measure of the convective or stratiform nature of each data point. The convective–stratiform classification is obtained by thresholding the convectivity field. Subcategories of low, mid-, and high stratiform, shallow, mid-, deep, and elevated convective, and mixed echoes are introduced, which are based on the melting-layer and divergence-level altitudes. As the algorithm provides vertically resolved classifications, it is capable of identifying different types of vertically layered echoes, and convective features that are embedded in stratiform cloud layers. Its robustness was tested on data from four HCR field campaigns that took place in different meteorological and climatological regimes. The algorithm was adapted for use in spaceborne and ground-based radars, proving its versatility, as it is adaptable not only to different radar types and wavelengths, but also different research applications.
more »
« less
- Award ID(s):
- 2103785
- PAR ID:
- 10377566
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Atmospheric and Oceanic Technology
- Volume:
- 39
- Issue:
- 11
- ISSN:
- 0739-0572
- Page Range / eLocation ID:
- p. 1705-1716
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Propagation of high‐frequency (HF) radio signals is strongly dependent on the ionospheric electron density structure along a communications link. The ground‐based, HF space weather radars of the Super Dual Auroral Radar Network (SuperDARN) utilize the ionospheric refraction of transmitted signals to monitor the global circulation ofE‐ andF‐region plasma irregularities. Previous studies have assessed the propagation characteristics of backscatter echoes from ionospheric irregularities in the auroral and polar regions of the Earth's ionosphere. By default, the geographic location of these echoes are found using empirical models which estimate the virtual backscattering height from the measured range along the radar signal path. However, the performance of these virtual height models has not yet been evaluated for mid‐latitude SuperDARN radar observations or for ground scatter (GS) propagation modes. In this study, we derive a virtual height model suitable for mid‐latitude SuperDARN observations using 5 years of data from the Christmas Valley East and West radars. This empirical model can be applied to both ionospheric and GS observations and provides an improved estimate of the ground range to the backscatter location compared to existing high‐latitude virtual height models. We also identify a region of overlapping half‐hopF‐region ionospheric scatter and one‐hopE‐region GS where the measured radar parameters (e.g., velocity, spectral width, elevation angle) are insufficient to discriminate between the two scatter types. Further studies are required to determine whether these backscatter echoes of ambiguous origin are observed by other mid‐latitude SuperDARN radars and their potential impact on scatter classification schemes.more » « less
-
Missing or low-quality data regions usually happen to weather radars. One of the most common situations is beam blockage or partial beam blockage. Therefore, correction of weather radar observations that are partially or fully blocked is an indispensable step in radar data quality control and subsequent quantitative applications, especially in complex terrain environments such as the western United States. In this article, we propose a deep learning framework based on generative adversarial networks (GANs) for restoring partial beam blockage regions in polarimetric radar observations using local and global contextual information. Due to the diverse precipitation types, blockage conditions, and ground information in different areas, two radars deployed in two different regions characterized by different precipitation types are used to demonstrate the proposed methodology. Both are S-band operational Weather Surveillance Radar – 1988 Doppler (WSR-88D): KFWS located in Fort Worth, northern Texas, and KDAX located in Davis, northern California. For training the GAN model, this article simulates the partial beam blockage situations by manually cropping observation sectors of both KDAX and KFWS radar data. The trained models were tested using independent precipitation events in Texas and California to demonstrate the model effectiveness in inpainting “missing” data. In addition, this paper cross-tested the data with different precipitation features to examine the generalization capacity of the beam blockage correction models. The beam blockage correction performance is also compared with a traditional linear interpolation approach. The results show that for both domains the continuity of precipitation observations is greatly improved after applying the deep learning based inpainting approach. For the KFWS test data, some visible discrepancies exist between the results from models trained based on convective and stratiform precipitation events in Texas and California, respectively, yet both models outperform the traditional interpolation method. For the KDAX test data, both the model trained using the KFWS data from convective precipitation events in Texas and the model trained using KDAX data from stratiform precipitation events in California render a similar performance. Although ground truth is not available for the real blocked radar data, the repaired observations demonstrated a great potential for improved quantitative applications.more » « less
-
Abstract Studies have implicated the importance of longwave (LW) cloud‐radiative forcing (CRF) in facilitating or accelerating the upscale development of tropical moist convection. While different cloud types are known to have distinct CRF, their individual roles in driving upscale development through radiative feedback is largely unexplored. Here we examine the hypothesis that CRF from stratiform regions has the greatest positive effect on upscale development of tropical convection. We do so through numerical model experiments using convection‐permitting ensemble WRF (Weather Research and Forecasting) simulations of tropical cyclone formation. Using a new column‐by‐column cloud classification scheme, we identify the contributions of five cloud types (shallow, congestus, and deep convective; and stratiform and anvil clouds). We examine their relative impacts on longwave radiation moist static energy (MSE) variance feedback and test the removal of this forcing in additional mechanism‐denial simulations. Our results indicate the importance stratiform and anvil regions in accelerating convective upscale development.more » « less
-
Abstract. An ability to accurately detect convective regions isessential for initializing models for short-term precipitation forecasts.Radar data are commonly used to detect convection, but radars that providehigh-temporal-resolution data are mostly available over land, and the qualityof the data tends to degrade over mountainous regions. On the other hand,geostationary satellite data are available nearly anywhere and in near-realtime. Current operational geostationary satellites, the GeostationaryOperational Environmental Satellite-16 (GOES-16) and Satellite-17, provide high-spatial- and high-temporal-resolution data but only of cloud top properties; 1 min data, however, allow us to observe convection from visible andinfrared data even without vertical information of the convective system.Existing detection algorithms using visible and infrared data look forstatic features of convective clouds such as overshooting top or lumpy cloudtop surface or cloud growth that occurs over periods of 30 min to anhour. This study represents a proof of concept that artificial intelligence(AI) is able, when given high-spatial- and high-temporal-resolution data fromGOES-16, to learn physical properties of convective clouds and automate thedetection process. A neural network model with convolutional layers is proposed to identifyconvection from the high-temporal resolution GOES-16 data. The model takesfive temporal images from channel 2 (0.65 µm) and 14 (11.2 µm) asinputs and produces a map of convective regions. In order to provideproducts comparable to the radar products, it is trained against Multi-RadarMulti-Sensor (MRMS), which is a radar-based product that uses a rathersophisticated method to classify precipitation types. Two channels fromGOES-16, each related to cloud optical depth (channel 2) and cloud topheight (channel 14), are expected to best represent features of convectiveclouds: high reflectance, lumpy cloud top surface, and low cloud toptemperature. The model has correctly learned those features of convectiveclouds and resulted in a reasonably low false alarm ratio (FAR) and highprobability of detection (POD). However, FAR and POD can vary depending onthe threshold, and a proper threshold needs to be chosen based on thepurpose.more » « less
An official website of the United States government
