Abstract Using data from the airborne HIAPER Cloud Radar (HCR), a partitioning algorithm (ECCO-V) that provides vertically resolved convectivity and convective versus stratiform radar-echo classification is developed for vertically pointing radars. The algorithm is based on the calculation of reflectivity and radial velocity texture fields that measure the horizontal homogeneity of cloud and precipitation features. The texture fields are translated into convectivity, a numerical measure of the convective or stratiform nature of each data point. The convective–stratiform classification is obtained by thresholding the convectivity field. Subcategories of low, mid-, and high stratiform, shallow, mid-, deep, and elevated convective, and mixed echoes are introduced, which are based on the melting-layer and divergence-level altitudes. As the algorithm provides vertically resolved classifications, it is capable of identifying different types of vertically layered echoes, and convective features that are embedded in stratiform cloud layers. Its robustness was tested on data from four HCR field campaigns that took place in different meteorological and climatological regimes. The algorithm was adapted for use in spaceborne and ground-based radars, proving its versatility, as it is adaptable not only to different radar types and wavelengths, but also different research applications. 
                        more » 
                        « less   
                    
                            
                            A Conditional Generative Adversarial Network for Weather Radar Beam Blockage Correction
                        
                    
    
            Missing or low-quality data regions usually happen to weather radars. One of the most common situations is beam blockage or partial beam blockage. Therefore, correction of weather radar observations that are partially or fully blocked is an indispensable step in radar data quality control and subsequent quantitative applications, especially in complex terrain environments such as the western United States. In this article, we propose a deep learning framework based on generative adversarial networks (GANs) for restoring partial beam blockage regions in polarimetric radar observations using local and global contextual information. Due to the diverse precipitation types, blockage conditions, and ground information in different areas, two radars deployed in two different regions characterized by different precipitation types are used to demonstrate the proposed methodology. Both are S-band operational Weather Surveillance Radar – 1988 Doppler (WSR-88D): KFWS located in Fort Worth, northern Texas, and KDAX located in Davis, northern California. For training the GAN model, this article simulates the partial beam blockage situations by manually cropping observation sectors of both KDAX and KFWS radar data. The trained models were tested using independent precipitation events in Texas and California to demonstrate the model effectiveness in inpainting “missing” data. In addition, this paper cross-tested the data with different precipitation features to examine the generalization capacity of the beam blockage correction models. The beam blockage correction performance is also compared with a traditional linear interpolation approach. The results show that for both domains the continuity of precipitation observations is greatly improved after applying the deep learning based inpainting approach. For the KFWS test data, some visible discrepancies exist between the results from models trained based on convective and stratiform precipitation events in Texas and California, respectively, yet both models outperform the traditional interpolation method. For the KDAX test data, both the model trained using the KFWS data from convective precipitation events in Texas and the model trained using KDAX data from stratiform precipitation events in California render a similar performance. Although ground truth is not available for the real blocked radar data, the repaired observations demonstrated a great potential for improved quantitative applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2239880
- PAR ID:
- 10515757
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Geoscience and Remote Sensing
- Volume:
- 61
- ISSN:
- 0196-2892
- Page Range / eLocation ID:
- 1 to 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            With varying tangential winds and combinations of stratiform and convective clouds, tropical cyclones (TCs) can be difficult to accurately portray when mosaicking data from ground-based radars. This study utilizes the Dual-frequency Precipitation Radar (DPR) from the Global Precipitation Measurement Mission (GPM) satellite to evaluate reflectivity obtained using four sampling methods of Weather Surveillance Radar 1988-Doppler data, including ground radars (GRs) in the GPM ground validation network and three mosaics, specifically the Multi-Radar/Multi-Sensor System plus two we created by retaining the maximum value in each grid cell (MAX) and using a distance-weighted function (DW). We analyzed Hurricane Laura (2020), with a strong gradient in tangential winds, and Tropical Storm Isaias (2020), where more stratiform precipitation was present. Differences between DPR and GR reflectivity were larger compared to previous studies that did not focus on TCs. Retaining the maximum value produced higher values than other sampling methods, and these values were closest to DPR. However, some MAX values were too high when DPR time offsets were greater than 120 s. The MAX method produces a more consistent match to DPR than the other mosaics when reflectivity is <35 dBZ. However, even MAX values are 3–4 dBZ lower than DPR in higher-reflectivity regions where gradients are stronger and features change quickly. The DW and MRMS mosaics produced values that were similar to one another but lower than DPR and MAX values.more » « less
- 
            Thunderstorms in southeastern South America (SESA) stand out in satellite observations as being among the strongest on Earth in terms of satellite-based convective proxies, such as lightning flash rate per storm, the prevalence for extremely tall, wide convective cores and broad stratiform regions. Accurately quantifying when and where strong convection is initiated presents great interest in operational forecasting and convective system process studies due to the relationship between convective storms and severe weather phenomena. This paper generates a novel methodology to determine convective initiation (CI) signatures associated with extreme convective systems, including extreme events. Based on the well-established area-overlapping technique, an adaptive brightness temperature threshold for identification and backward tracking with infrared data is introduced in order to better identify areas of deep convection associated with and embedded within larger cloud clusters. This is particularly important over SESA because ground-based weather radar observations are currently limited to particular areas. Extreme rain precipitation features (ERPFs) from Tropical Rainfall Measurement Mission are examined to quantify the full satellite-observed life cycle of extreme convective events, although this technique allows examination of other intense convection proxies such as the identification of overshooting tops. CI annual and diurnal cycles are analyzed and distinctive behaviors are observed for different regions over SESA. It is found that near principal mountain barriers, a bimodal diurnal CI distribution is observed denoting the existence of multiple CI triggers, while convective initiation over flat terrain has a maximum frequency in the afternoon.more » « less
- 
            Abstract The Echo Classification from COnvectivity (ECCO) algorithm identifies convective and stratiform types of radar echo in three dimensions. It is based on the calculation of reflectivity texture—a combination of the intensity and the heterogeneity of the radar echoes on each horizontal plane in a 3D Cartesian volume. Reflectivity texture is translated into convectivity, which is designed to be a quantitative measure of the convective nature of each 3D radar grid point. It ranges from 0 (100% stratiform) to 1 (100% convective). By thresholding convectivity, a more traditional qualitative categorization is obtained, which classifies radar echoes as convective, mixed, or stratiform. In contrast to previous algorithms, these echo-type classifications are provided on the full 3D grid of the reflectivity field. The vertically resolved classifications, in combination with temperature data, allow for subclassifications into shallow, mid-, deep, and elevated convective features, and low, mid-, and high stratiform regions—again in three dimensions. The algorithm was validated using datasets collected over the U.S. Great Plains during the PECAN field campaign. An analysis of lightning counts shows ∼90% of lightning occurring in regions classified as convective by ECCO. A statistical comparison of ECCO echo types with the well-established GPM radar precipitation-type categories show 84% (88%) of GPM stratiform (convective) echo being classified as stratiform (convective) or mixed by ECCO. ECCO was applied to radar grids for the continental United States, the United Arab Emirates, Australia, and Europe, illustrating its robustness and adaptability to different radar grid characteristics and climatic regions.more » « less
- 
            null (Ed.)ABSTRACT The launch of NOAA’s latest generation of geostationary satellites known as the Geostationary Operational Environmental Satellite (GOES)-R Series has opened new opportunities in quantifying precipitation rates. Recent efforts have strived to utilize these data to improve space-based precipitation retrievals. The overall objective of the present work is to carry out a detailed error budget analysis of the improved Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm for GOES-R and the passive microwave (MW) combined (MWCOMB) precipitation dataset used to calibrate it with an aim to provide insights regarding strengths and weaknesses of these products. This study systematically analyzes the errors across different climate regions and also as a function of different precipitation types over the conterminous United States. The reference precipitation dataset is Ground-Validation Multi-Radar Multi-Sensor (GV-MRMS). Overall, MWCOMB reveals smaller errors as compared to SCaMPR. However, the analysis indicated that that the major portion of error in SCaMPR is propagated from the MWCOMB calibration data. The major challenge starts with poor detection from MWCOMB, which propagates in SCaMPR. In particular, MWCOMB misses 90% of cool stratiform precipitation and the overall detection score is around 40%. The ability of the algorithms to quantify precipitation amounts for the Warm Stratiform, Cool Stratiform, and Tropical/Stratiform Mix categories is poor compared to the Convective and Tropical/Convective Mix categories with additional challenges in complex terrain regions. Further analysis showed strong similarities in systematic and random error models with both products. This suggests that the potential of high-resolution GOES-R observations remains underutilized in SCaMPR due to the errors from the calibrator MWCOMB.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    