skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variability of the Sub‐Antarctic Mode Water Subduction Rate During the Argo Period
Abstract Both a quasi‐biennial variability and an overall linearly increasing trend are identified in the Sub‐Antarctic Mode Water (SAMW) subduction rate across the Southern Hemisphere ocean, using the Argo data during 2005–2019. The quasi‐biennial variability is mainly due to variability of the mixed layer depth. Variability of wind stress curl in the SAMW formation regions associated with the Southern Annular Mode plays a critical role in generating the quasi‐biennial variability of the mixed layer depth and consequently the SAMW subduction rates. The SAMW subduction rate across the Southern Hemisphere ocean, long‐term mean totaling 56 Sv, has increased at 0.73 ± 0.65 Sv year−1over the past 15 years. The increase has directly contributed to the observed increase in the total SAMW volume. Much of this increasing trend can be explained by the deepening mixed layers, which in turn are primarily forced by the strengthening westerly winds under an increasing Southern Annular Mode.  more » « less
Award ID(s):
1829809 1829824
PAR ID:
10377610
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Subantarctic Mode Water (SAMW) plays an essential role in the global heat, freshwater, carbon, and nutrient budgets. In this study, decadal changes in the SAMW properties in the Southern Indian Ocean (SIO) and associated thermodynamic and dynamic processes are investigated during the Argo era. Both temperature and salinity of the SAMW in the SIO show increasing trends during 2004-2018. A two-layer structure of the SAMW trend, with more warm and salty light SAMW but less cool and fresh dense SAMW, is identified. The heaving and spiciness processes are important but have opposite contributions to the temperature and salinity trends of the SAMW. A significant deepening of isopycnals (heaving), peaking at σ θ =26.7-26.8 kg m −3 in the middle layer of the SAMW, expands the warm and salty light SAMW and compresses the cool and fresh dense SAMW corresponding to the change in subduction rate during 2004-2018. The change in the SAMW subduction rate is dominated by the change in the mixed layer depth, controlled by the changes in wind stress curl and surface buoyancy loss. An increase in the mixed-layer temperature due to weakening northward Ekman transport of cool water leads to a lighter surface density in the SAMW formation region. Consequently, density outcropping lines in the SAMW formation region shift southward and favor the intrusion and entrainment of the cooler and fresher Antarctic surface water from the south, contributing to the cooling/freshening trend of isopycnals (spiciness). Subsequently, the cooler and fresher SAMW spiciness anomalies spread in the SIO via the subtropical gyre. 
    more » « less
  2. Abstract This study investigates the variability of the Southern Hemisphere super gyre (SHSG), using remotely sensed altimeter measurements, in situ Argo observations, and results from an ocean state estimate of the Consortium for Estimating the Circulation and Climate of the Ocean. Analyses of altimeter data show large trends of sea surface height, and their positive‐negative contrast suggests a strengthening of subtropical gyres in all the three Southern Hemisphere oceans since 1993. Analyses of Argo data and the Estimating the Circulation and Climate of the Ocean estimate indicate that these dynamic signals of southern subtropical gyres extend to at least 2,000 m. The three southern subtropical gyres are interconnected through the Tasman and Agulhas leakages and vary consistently during the period 1993–2016. The Tasman and Agulhas leakages also show an increasing trend of inter‐ocean water exchange with a typical increase of ~2 Sv (1 Sv = 106 m3/s) per decade, indicative of a two‐decade‐long spin‐up of the SHSG. The strengthening and poleward shift of westerly winds are associated with an increasing southern annular mode, which affect the midlatitude and high‐latitude Southern Hemisphere oceans and contribute to the spin‐up of the SHSG. 
    more » « less
  3. null (Ed.)
    Abstract The deepest wintertime (Jul-Sep) mixed layers associated with Subantarctic Mode Water (SAMW) formation develop in the Indian and Pacific sectors of the Southern Ocean. In these two sectors the dominant interannual variability of both deep wintertime mixed layers and SAMW volume is a east-west dipole pattern in each basin. The variability of these dipoles are strongly correlated with the interannual variability of overlying winter quasi-stationary mean sea level pressure (MSLP) anomalies. Anomalously strong positive MSLP anomalies are found to result in the deepening of the wintertime mixed layers and an increase in the SAMW formation in the eastern parts of the dipoles in the Pacific and Indian sectors. These effects are due to enhanced cold southerly meridional winds, strengthened zonal winds and increased surface ocean heat loss. The opposite occurs in the western parts of the dipoles in these sectors. Conversely, strong negative MSLP anomalies result in shoaling (deepening) of the wintertime mixed layers and a decrease (increase) in SAMW formation in the eastern (western) regions. The MSLP variability of the Pacific and Indian basin anomalies are not always in phase, especially in years with a strong El Niño, resulting in different patterns of SAMW formation in the western vs. eastern parts of the Indian and Pacific sectors. Strong isopycnal depth and thickness anomalies develop in the SAMW density range in years with strong MSLP anomalies. When advected eastward, they act to precondition downstream SAMW formation in the subsequent winter. 
    more » « less
  4. Abstract Subduction in the Antarctic circumpolar region of the Southern Ocean (SO) results in the formation of Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water (SAMW). Theoretical understanding predicts that subduction rates of these waters masses is driven by wind stress curl and buoyancy fluxes. The objective of this work is to evaluate the extent to which AAIW and SAMW variability are correlated to SO air‐sea fluxes and how potential changes to those forcings would impact the future water mass export rates. We correlate the water mass volume transport at 30°S with Ekman pumping, freshwater and heat fluxes in the Coupled Model Intercomparison Project. The export of these water masses varies across models, with most overestimating the total transport. Correlation coefficients between the air‐sea fluxes and exports are consistent with theoretical expectations. In the picontrol/historical scenarios, the highest correlations with AAIW export variability are heat flux, while Ekman pumping best explains SAMW. However, multivariate regressions show that both AAIW and SAMW export variability are better explained using the combination of all three fluxes. In future scenario simulations air‐sea fluxes trend significantly in the catastrophic scenario (RCP8.5 and SSP8.5). Both AAIW and SAMW are still highly correlated to the fluxes, but with different correlation coefficients. The dominant forcing components even change from the present simulations to the future scenario runs. Thus, correlations between AAIW and SAMW transports and air‐sea fluxes are not stationary in time, limiting the predictive skill of statistical models and highlighting the importance of using complex climate models. 
    more » « less
  5. Abstract The subtropical oceans between 35°-20°S in the Southern Hemisphere (SH) have exhibited prevailingly rapid sea-level rise (SLR) rates since the mid-20thcentury, amplifying damages of coastal hazards and exerting increasing threats to South America, Africa, and Australia. Yet, mechanisms of the observed SLR have not been firmly established, and its representation in climate models has not been examined. By analyzing observational sea-level estimates, ocean reanalysis products, and ocean model hindcasts, we show that the steric SLR of the SH subtropical oceans between 35°-20°S is faster than the global mean rate by 18.2%±9.9% during 1958-2014. However, present climate models—the fundamental bases for future climate projections—generally fail to reproduce this feature. Further analysis suggests that the rapid SLR in the SH subtropical oceans is primarily attributable to the persistent upward trend of the Southern Annular Mode (SAM). Physically, this trend in SAM leads to the strengthening of the SH subtropical highs, with the strongest signatures observed in the southern Indian Ocean. These changes in atmospheric circulation promote regional SLR in the SH subtropics by driving upper-ocean convergence. Climate models show systematic biases in the simulated structure and trend magnitude of SAM and significantly underestimate the enhancement of subtropical highs. These biases lead to the inability of models to correctly simulate the observed subtropical SLR. This work highlights the paramount necessity of reducing model biases to provide reliable regional sea-level projections. 
    more » « less