skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Cross Sections and Rate Coefficients for Vibrational Excitation of H2O by Electron Impact
Cross-sections and thermally averaged rate coefficients for vibration (de-)excitation of a water molecule by electron impact are computed; one and two quanta excitations are considered for all three normal modes. The calculations use a theoretical approach that combines the normal mode approximation for vibrational states of water, a vibrational frame transformation employed to evaluate the scattering matrix for vibrational transitions and the UK molecular R-matrix code. The interval of applicability of the rate coefficients is from 10 to 10,000 K. A comprehensive set of calculations is performed to assess uncertainty of the obtained data. The results should help in modelling non-LTE spectra of water in various astrophysical environments.  more » « less
Award ID(s):
1806915
PAR ID:
10377686
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Atoms
Volume:
9
Issue:
3
ISSN:
2218-2004
Page Range / eLocation ID:
62
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study presents calculations for cross sections of the vibrational excitation of H2O (X1A1) via electron impact. The theoretical approach employed here is based on first principles only, combining electron-scattering calculations performed using the UK R-matrix codes for several geometries of the target molecule, three-dimensional (3D) vibrational states of H2O, and 3D vibrational frame transformation. The aim is to represent the scattering matrix for the electron incident of the molecule. The vibrational wave functions were obtained numerically, without the normal-mode approximation, so that the interactions and transitions between vibrational states assigned to different normal modes could be accounted for. The thermally averaged rate coefficients were derived from the calculated cross sections for temperatures in the 10–10 000 K interval and analytical fits for rate coefficients were also provided. We assessed the uncertainty estimations of the obtained data for subsequent applications of the rate coefficients in modelling the non-local thermal equilibrium (non-LTE) spectra of water in various astrophysical environments. 
    more » « less
  2. Abstract Cross sections for the vibrational excitation and dissociative recombination (DR) of the C F 3 + ion in collisions with electrons at low scattering energies are computed using a previously-developed approach combining the normal mode approximation for the vibrational states of the target ion and the UK R -matrix code for the evaluation of the scattering matrices at fixed geometries. The obtained cross section for the DR shows excellent agreement with the experimental data from the ASTRID storage ring. Thermally-averaged rate coefficients are obtained from the cross sections for temperatures 10–3000 K. 
    more » « less
  3. An approach for identifying resonances in vibrational perturbation theory calculations is introduced. This approach makes use of the corrections to the wave functions that are obtained from non-degenerate perturbation theory calculations to identify spaces of states that must be treated with degenerate perturbation theory. Pairs of states are considered to be in resonance if the magnitude of expansion coefficients in the corrections to the wave functions in the non-degenerate perturbation theory calculation is greater than a specified threshold, χ max . This approach is applied to calculations of the vibrational spectra of CH 4 , H 2 CO, HNO 3 , and cc-HOONO. The question of how the identified resonances depend on the value of χ max and how the choice of the resonance spaces affects the calculated vibrational spectrum is further explored for H 2 CO. The approach is also compared to the Martin test [J. M. L. Martin et al., J. Chem. Phys. 103, 2589–2602 (1995)] for calculations of the vibrational spectra of H 2 CO and cc-HOONO. 
    more » « less
  4. ABSTRACT

    This paper presents rate coefficients for transitions between rotational levels of the A-type and E-type nuclear spin modifications of methanol induced by collisions with molecular hydrogen. These rate coefficients are required for an accurate determination of methanol abundance in the interstellar medium, where local thermodynamic equilibrium conditions generally do not apply. Time-independent close-coupling quantum scattering calculations have been employed to calculate cross-sections and rate coefficients for the (de-)excitation of methanol in collisions with para- and ortho-H2. These calculations utilized a potential energy surface (PES) for the interaction of methanol with H2 recently computed by the explicitly correlated CCSD(T)-F12a coupled-cluster method that employed a correlation-consistent aug-cc-pVTZ basis. Rate coefficients for temperatures ranging from 3 to 250 K were calculated for all transitions among the first 76 rotational levels of both A-type and E-type methanol, whose energies are less than or equal to 170 K. These rate coefficients are compared with those by Rabli and Flower who carried out coupled-state calculations using a PES computed by second-order many-body perturbation theory. Simple radiative transfer calculations using the present set of rate coefficients are also reported and compared with such calculations using the rate coefficients previously computed by Rabli and Flower.

     
    more » « less
  5. Study of the formation mechanism for atmospheric ozone helps to understand development of planetary atmosphere. We focus on anomalous mass-independent isotope effect. To understand the nature of isotope effect we consider all stages of ozone formation with commonly used mechanism at the low pressure regime - energy transfer (Lindemann) mechanism which involves metastable intermediate state O3*. O3* is described by scattering resonance in quantum mechanics. Particularly, scattering resonances can be calculated using of stabilization method of Clary. Stabilization approach implies that eigenvalues change as a functions of stabilization parameter (extension of the grid boundary). Based on quantum mechanical calculations of scattering resonances, kinetic rate coefficients were computed. Found resonance states were used for calculation of kinetics rate coefficients such as equilibrium and recombination coefficients for three pressure regimes (0.3, 30 and 3000 atm). Influence of pressure was estimated as well as contributions of other kinetic parameters - stabilization constant weight of each resonance, rotational, vibrational and electronic partition functions for molecule 686 O3. 
    more » « less