skip to main content

Title: Machine learning-assisted ultrafast flash sintering of high-performance and flexible silver–selenide thermoelectric devices
Flexible thermoelectric generators (TEGs) have shown immense potential for serving as a power source for wearable electronics and the Internet of Things. A key challenge preventing large-scale application of TEGs lies in the lack of a high-throughput processing method, which can sinter thermoelectric (TE) materials rapidly while maintaining their high thermoelectric properties. Herein, we integrate high-throughput experimentation and Bayesian optimization (BO) to accelerate the discovery of the optimum sintering conditions of silver–selenide TE films using an ultrafast intense pulsed light (flash) sintering technique. Due to the nature of the high-dimensional optimization problem of flash sintering processes, a Gaussian process regression (GPR) machine learning model is established to rapidly recommend the optimum flash sintering variables based on Bayesian expected improvement. For the first time, an ultrahigh-power factor flexible TE film (a power factor of 2205 μW m −1 K −2 with a zT of 1.1 at 300 K) is demonstrated with a sintering time less than 1.0 second, which is several orders of magnitude shorter than that of conventional thermal sintering techniques. The films also show excellent flexibility with 92% retention of the power factor (PF) after 10 3 bending cycles with a 5 mm bending radius. In addition, a wearable thermoelectric generator based on the flash-sintered films generates a very competitive power density of 0.5 mW cm −2 at a temperature difference of 10 K. This work not only shows the tremendous potential of high-performance and flexible silver–selenide TEGs but also demonstrates a machine learning-assisted flash sintering strategy that could be used for ultrafast, high-throughput and scalable processing of functional materials for a broad range of energy and electronic applications.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Energy & Environmental Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Flexible thermoelectric (TE) devices hold great promise for energy harvesting and cooling applications, with increasing significance to serve as perpetual power sources for flexible electronics and wearable devices. Despite unique and superior TE properties widely reported in nanocrystals, transforming these nanocrystals into flexible and functional forms remains a major challenge. Herein, demonstrated is a transformative 3D conformal aerosol jet printing and rapid photonic sintering process to print and sinter solution‐processed Bi2Te2.7Se0.3nanoplate inks onto virtually any flexible substrates. Within seconds of photonic sintering, the electrical conductivity of the printed film is dramatically improved from nonconductive to 2.7 × 104S m−1. The films demonstrate a room temperature power factor of 730 µW m−1K−2, which is among the highest values reported in flexible TE films. Additionally, the film shows negligible performance changes after 500 bending cycles. The highly scalable and low‐cost fabrication process paves the way for large‐scale manufacturing of flexible devices using a variety of high‐performing nanoparticle inks.

    more » « less
  2. Thermoelectric generators (TEGs) convert temperature differences into electrical power and are attractive among energy harvesting devices due to their autonomous and silent operation. While thermoelectric materials have undergone substantial improvements in material properties, a reliable and cost-effective fabrication method suitable for microgravity and space applications remains a challenge, particularly as commercial space flight and extended crewed space missions increase in frequency. This paper demonstrates the use of plasma-jet printing (PJP), a gravity-independent, electromagnetic field-assisted printing technology, to deposit colloidal thermoelectric nanoflakes with engineered nanopores onto flexible substrates at room temperature. We observe substantial improvements in material adhesion and flexibility with less than 2% and 11% variation in performance after 10 000 bending cycles over 25 mm and 8 mm radii of curvature, respectively, as compared to previously reported TE films. Our printed films demonstrate electrical conductivity of 2.5 × 10 3 S m −1 and a power factor of 70 μW m −1 K −2 at room temperature. To our knowledge, these are the first reported values of plasma-jet printed thermoelectric nanomaterial films. This advancement in plasma jet printing significantly promotes the development of nanoengineered 2D and layered materials not only for energy harvesting but also for the development of large-scale flexible electronics and sensors for both space and commercial applications. 
    more » « less
  3. Abstract

    Optimizing material compositions often enhances thermoelectric performances. However, the large selection of possible base elements and dopants results in a vast composition design space that is too large to systematically search using solely domain knowledge. To address this challenge, a hybrid data‐driven strategy that integrates Bayesian optimization (BO) and Gaussian process regression (GPR) is proposed to optimize the composition of five elements (Ag, Se, S, Cu, and Te) in AgSe‐based thermoelectric materials. Data is collected from the literature to provide prior knowledge for the initial GPR model, which is updated by actively collected experimental data during the iteration between BO and experiments. Within seven iterations, the optimized AgSe‐based materials prepared using a simple high‐throughput ink mixing and blade coating method deliver a high power factor of 2100 µW m−1K−2, which is a 75% improvement from the baseline composite (nominal composition of Ag2Se1). The success of this study provides opportunities to generalize the demonstrated active machine learning technique to accelerate the development and optimization of a wide range of material systems with reduced experimental trials.

    more » « less
  4. A solid‐state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low‐cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu2Se) thin film, consisting of earth‐abundant elements, is reported. The thin film is fabricated by a low‐cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu2Se thin film exhibits a power factor of 0.62 mW/(m K2) at 684 K on rigid Al2O3substrate and 0.46 mW/(m K2) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu2Se thin films (<0.1 mW/(m K2)) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K2)). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low‐cost and scalable pathway to high‐performance flexible thin film thermoelectric devices from relatively earth‐abundant elements.

    more » « less
  5. Bismuth telluride-based thin films have been investigated as the active material in flexible and micro thermoelectric generators (TEGs) for near room-temperature energy harvesting applications. The latter is a class of compact printed circuit board compatible devices conceptualized for operation at low-temperature gradients to generate power for wireless sensor nodes (WSNs), the fundamental units of the Internet-of-Things (IoT). CMOS and MEMS compatible micro-TEGs require thin films that can be integrated into the fabrication flow without compromising their thermoelectric properties. We present results on the thermoelectric properties of (Bi,Sb)2(Se,Te)3 thin films deposited via thermal evaporation of ternary compound pellets on four-inch SiO2 substrates at room temperature. Thin-film compositions and post-deposition annealing parameters are optimized to achieve power factors of 2.75 mW m−1 K−2 and 0.59 mW m−1 K−2 for p-type and n-type thin films. The measurement setup is optimized to characterize the thin-film properties accurately. Thin-film adhesion is further tested and optimized on several substrates. Successful lift-off of p-type and n-type thin films is completed on the same wafer to create thermocouple patterns as per the target device design proving compatibility with the standard MEMS fabrication process. 
    more » « less