Abstract We perform path-integral molecular dynamics (PIMD), ring-polymer MD (RPMD), and classical MD simulations of H$$_2$$ O and D$$_2$$ O using the q-TIP4P/F water model over a wide range of temperatures and pressures. The density$$\rho (T)$$ , isothermal compressibility$$\kappa _T(T)$$ , and self-diffusion coefficientsD(T) of H$$_2$$ O and D$$_2$$ O are in excellent agreement with available experimental data; the isobaric heat capacity$$C_P(T)$$ obtained from PIMD and MD simulations agree qualitatively well with the experiments. Some of these thermodynamic properties exhibit anomalous maxima upon isobaric cooling, consistent with recent experiments and with the possibility that H$$_2$$ O and D$$_2$$ O exhibit a liquid-liquid critical point (LLCP) at low temperatures and positive pressures. The data from PIMD/MD for H$$_2$$ O and D$$_2$$ O can be fitted remarkably well using the Two-State-Equation-of-State (TSEOS). Using the TSEOS, we estimate that the LLCP for q-TIP4P/F H$$_2$$ O, from PIMD simulations, is located at$$P_c = 167 \pm 9$$ MPa,$$T_c = 159 \pm 6$$ K, and$$\rho _c = 1.02 \pm 0.01$$ g/cm$$^3$$ . Isotope substitution effects are important; the LLCP location in q-TIP4P/F D$$_2$$ O is estimated to be$$P_c = 176 \pm 4$$ MPa,$$T_c = 177 \pm 2$$ K, and$$\rho _c = 1.13 \pm 0.01$$ g/cm$$^3$$ . Interestingly, for the water model studied, differences in the LLCP location from PIMD and MD simulations suggest that nuclear quantum effects (i.e., atoms delocalization) play an important role in the thermodynamics of water around the LLCP (from the MD simulations of q-TIP4P/F water,$$P_c = 203 \pm 4$$ MPa,$$T_c = 175 \pm 2$$ K, and$$\rho _c = 1.03 \pm 0.01$$ g/cm$$^3$$ ). Overall, our results strongly support the LLPT scenario to explain water anomalous behavior, independently of the fundamental differences between classical MD and PIMD techniques. The reported values of$$T_c$$ for D$$_2$$ O and, particularly, H$$_2$$ O suggest that improved water models are needed for the study of supercooled water.
more »
« less
In-sensor neural network for high energy efficiency analog-to-information conversion
Abstract This work presents an on-chip analog-to-information conversion technique that utilizes analog hyper-dimensional computing based on reservoir-computing paradigm to process electrocardiograph (ECG) signals locally in-sensor and reduce radio frequency transmission by more than three orders-of-magnitude. Instead of transmitting the naturally sparse ECG signal or extracted features, the on-chip analog-to-information converter analyzes the ECG signal through a nonlinear reservoir kernel followed by an artificial neural network, and transmits the prediction results. The proposed technique is demonstrated for detection of sepsis onset and achieves state-of-the-art accuracy and energy efficiency while reducing sensor power by$$159\times $$ with test-chips prototyped in 65 nm CMOS.
more »
« less
- Award ID(s):
- 1948331
- PAR ID:
- 10377693
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Chabauty–Kim method and its refined variant by Betts and Dogra aim to cut out theS-integral points$$X(\mathbb {Z}_S)$$ on a curve inside thep-adic points$$X(\mathbb {Z}_p)$$ by producing enough Coleman functions vanishing on them. We derive new functions in the case of the thrice-punctured line whenScontains two primes. We describe an algorithm for computing refined Chabauty–Kim loci and verify Kim’s Conjecture over$$\mathbb {Z}[1/6]$$ for all choices of auxiliary prime $$p < 10{,}000$$ .more » « less
-
Abstract Measurements of Higgs boson production, where the Higgs boson decays into a pair of$$\uptau $$ leptons, are presented, using a sample of proton-proton collisions collected with the CMS experiment at a center-of-mass energy of Equation missing<#comment/>, corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$ . Three analyses are presented. Two are targeting Higgs boson production via gluon fusion and vector boson fusion: a neural network based analysis and an analysis based on an event categorization optimized on the ratio of signal over background events. These are complemented by an analysis targeting vector boson associated Higgs boson production. Results are presented in the form of signal strengths relative to the standard model predictions and products of cross sections and branching fraction to$$\uptau $$ leptons, in up to 16 different kinematic regions. For the simultaneous measurements of the neural network based analysis and the analysis targeting vector boson associated Higgs boson production signal strengths are found to be$$0.82\pm 0.11$$ for inclusive Higgs boson production,$$0.67\pm 0.19$$ ($$0.81\pm 0.17$$ ) for the production mainly via gluon fusion (vector boson fusion), and$$1.79\pm 0.45$$ for vector boson associated Higgs boson production.more » « less
-
Abstract A method for modelling the prompt production of molecular states using the hadronic rescattering framework of the general-purpose Pythia event generator is introduced. Production cross sections of possible exotic hadronic molecules via hadronic rescattering at the LHC are calculated for the$$\chi _{c1}(3872)$$ resonance, a possible tetraquark state, as well as three possible pentaquark states,$$P_c^+(4312)$$ ,$$P_c^+(4440)$$ , and$$P_c^+(4457)$$ . For the$$P_c^+$$ states, the expected cross section from$$\Lambda _b$$ decays is compared to the hadronic-rescattering production. The$$\chi _{c1}(3872)$$ cross section is compared to the fiducial$$\chi _{c1}(3872)$$ cross-section measurement by LHCb and found to contribute at a level of$${\mathcal {O}({1\%})}$$ . Finally, the expected yields of$$\mathrm {P_c^{+}}$$ production from hadronic rescattering during Run 3 of LHCb are estimated. The prompt background is found to be significantly larger than the prompt$$\mathrm {P_c^{+}}$$ signal from hadronic rescattering.more » « less
-
A<sc>bstract</sc> A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair ($$ \textrm{b}\overline{\textrm{b}} $$ ) is presented using proton-proton collision data recorded by the CMS experiment at$$ \sqrt{s} $$ = 13 TeV and corresponding to an integrated luminosity of 90.8 fb−1. Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be$$ {\mu}_{\textrm{Hb}\overline{\textrm{b}}}^{\textrm{qqh}}={1.01}_{-0.46}^{+0.55} $$ . The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be$$ {\mu}_{\textrm{Hb}\overline{\textrm{b}}}^{\textrm{incl}.}={0.99}_{-0.41}^{+0.48} $$ , corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations.more » « less
An official website of the United States government
