skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building learned federated query optimizers
The goal of this thesis is to introduce a new design for building federated query optimizers, based on machine learning. We propose a modular and flexible architecture, allowing a federated query optimizer to integrate with any database system that supports SQL, with close-to-zero engineering effort. By observing the performance of the external systems, our optimizer learns and builds cost models on-the-fly, enabling federated query optimization with negligible communication with the external systems. To demonstrate the potential of this research plan, we present a prototype of our federated query optimizer built on top of Spark SQL. Our implementation effectively accelerates federated queries, achieving up to 7.5x better query execution times compared to the vanilla implementation of Spark SQL.  more » « less
Award ID(s):
1910830
PAR ID:
10377801
Author(s) / Creator(s):
Date Published:
Journal Name:
CEUR workshop proceedings
Volume:
Vol-3186
ISSN:
1613-0073
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present HRDBMS, a novel distributed shared-nothing database system developed with the goal of improving scalability of MPP databases based on a principled combination of techniques from MPP and Big Data systems with novel communication and work-distribution techniques. HRDBMS runs on a custom distributed and asynchronous execution engine that features highly parallelized operator implementations. The system features a cost-based optimization framework, user-defined data partitioning, locality-aware query execution, a non-blocking and hierarchical shuffle, and data skipping based on caching predicate matches. Our experimental comparison with Hive, Spark SQL, and Greenplum confirms that HRDBMS’s scalability is on par with Hive and Spark SQL (up to 96 nodes) while its per-node performance can compete with MPP databases (Greenplum). 
    more » « less
  2. Resource disaggregation (RD) is an emerging paradigm for data center computing whereby resource-optimized servers are employed to minimize resource fragmentation and improve resource utilization. Apache Spark deployed under the RD paradigm employs a cluster of compute-optimized servers to run executors and a cluster of storage-optimized servers to host the data on HDFS. However, the network transfer from storage to compute cluster becomes a severe bottleneck for big data processing. Near-data processing (NDP) is a concept that aims to alleviate network load in such cases by offloading (or “pushing down”) some of the compute tasks to the storage cluster. Employing NDP for Spark under the RD paradigm is challenging because storage-optimized servers have limited computational resources and cannot host the entire Spark processing stack. Further, even if such a lightweight stack could be developed and deployed on the storage cluster, it is not entirely obvious which Spark queries would benefit from pushdown, and which tasks of a given query should be pushed down to storage. This paper presents the design and implementation of a near-data processing system for Spark, SparkNDP, that aims to address the aforementioned challenges. SparkNDP works by implementing novel NDP Spark capabilities on the storage cluster using a lightweight library of SQL operators and then developing an analytical model to help determine which Spark tasks should be pushed down to storage based on the current network and system state. Simulation and prototype implementation results show that SparkNDP can help reduce Spark query execution times when compared to both the default approach of not pushing down any tasks to storage and the outright NDP approach of pushing all tasks to storage. 
    more » « less
  3. We present the first query-based approach for explaining missing answers to queries over nested relational data which is a common data format used by big data systems such as Apache Spark. Our main contributions are a novel way to define query-based why-not provenance based on repairs to queries and presenting an implementation and preliminary experiments for answering such queries in Spark. 
    more » « less
  4. Proving the equivalence between SQL queries is a fundamental problem in database research. Existing solvers model queries using algebraic representations and convert such representations into first-order logic formulas so that query equivalence can be verified by solving a satisfiability problem. The main challenge lies in unbounded summations, which appear commonly in a query's algebraic representation in order to model common SQL features, such as projection and aggregate functions. Unfortunately, existing solvers handle unbounded summations in an ad-hoc manner based on heuristics or syntax comparison, which severely limits the set of queries that can be supported. This paper develops a new SQL equivalence prover called SQLSolver, which can handle unbounded summations in a principled way. Our key insight is to use the theory of LIA^*, which extends linear integer arithmetic formulas with unbounded sums and provides algorithms to translate a LIA^* formula to a LIA formula that can be decided using existing SMT solvers. We augment the basic LIA^* theory to handle several complex scenarios (such as nested unbounded summations) that arise from modeling real-world queries. We evaluate SQLSolver with 359 equivalent query pairs derived from the SQL rewrite rules in Calcite and Spark SQL. SQLSolver successfully proves 346 pairs of them, which significantly outperforms existing provers. 
    more » « less
  5. null (Ed.)
    Query-based explanations for missing answers identify which operators of a query are responsible for the failure to return a missing answer of interest. This type of explanations has proven useful, e.g., to debug complex analytical queries. Such queries are frequent in big data systems such as Apache Spark. We present a novel approach to produce query-based explanations. It is the first to support nested data and to consider operators that modify the schema and structure of the data (e.g., nesting, projections) as potential causes of missing answers. To efficiently compute explanations, we propose a heuristic algorithm that applies two novel techniques: (i) reasoning about multiple schema alternatives for a query and (ii) re-validating at each step whether an intermediate result can contribute to the missing answer. Using an implementation on Spark, we demonstrate that our approach is the first to scale to large datasets while often finding explanations that existing techniques fail to identify. 
    more » « less