skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Influence of Grain Size Distribution on Laboratory‐Generated Volcanic Lightning
Abstract Over the last decades, remote observation tools and models have been developed to improve the forecasting of ash‐rich volcanic plumes. One challenge in these forecasts is knowing the properties at the vent, including the mass eruption rate and grain size distribution (GSD). Volcanic lightning is a common feature of explosive eruptions with high mass eruption rates of fine particles. The GSD is expected to play a major role in generating lightning in the gas thrust region via triboelectrification. Here, we experimentally investigate the electrical discharges of volcanic ash as a function of varying GSD. We employ two natural materials, a phonolitic pumice and a tholeiitic basalt (TB), and one synthetic material (soda‐lime glass beads [GB]). For each of the three materials, coarse and fine grain size fractions with known GSDs are mixed, and the particle mixture is subjected to rapid decompression. The experiments are observed using a high‐speed camera to track particle‐gas dispersion dynamics during the experiments. A Faraday cage is used to count the number and measure the magnitude of electrical discharge events. Although quite different in chemical composition, TB and GB show similar vent dynamics and lightning properties. The phonolitic pumice displays significantly different ejection dynamics and a significant reduction in lightning generation. We conclude that particle‐gas coupling during an eruption, which in turn depends on the GSD and bulk density, plays a major role in defining the generation of lightning. The presence of fines, a broad GSD, and dense particles all promote lightning.  more » « less
Award ID(s):
2042173
PAR ID:
10377890
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
10
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The origin of electrical activity accompanying volcanic ash plumes is an area of heightened interest in volcanology. However, it is unclear how intense an eruption needs to be to produce lightning flashes as opposed to “vent discharges,” which represent the smallest scale of electrical activity. This study targets 97 carefully monitored plumes <3 km high from Sakurajima volcano in Japan, from June 1 to 7, 2015. We use multiparametric measurements from sensors including a nine‐station lightning mapping array and an infrared camera to characterize plume ascent. Findings demonstrate that the impulsive, high velocity plumes (>55 m/s) were most likely to create vent discharges, whereas lightning flashes occurred in plumes with high volume flux. We identified conditions where volcanic lightning occurred without detectable vent discharges, highlighting their independent source mechanisms. Our results imply that plume dynamics govern the charging for volcanic lightning, while the characteristics of the source explosion control vent discharges. 
    more » « less
  2. Abstract During explosive volcanic eruptions, volcanic ash is ejected into the atmosphere, impacting aircraft safety and downwind communities. These volcanic clouds tend to be dominated by fine ash (<63 μm in diameter), permitting transport over hundreds to thousands of kilometers. However, field observations show that much of this fine ash aggregates into clusters or pellets with faster settling velocities than individual particles. Models of ash transport and deposition require an understanding of aggregation processes, which depend on factors like moisture content and local particle collision rates. In this study, we develop a Plume Model for Aggregate Prediction, a one‐dimensional (1D) volcanic plume model that predicts the plume rise height, concentration of water phases, and size distribution of resulting ash aggregates from a set of eruption source parameters. The plume model uses a control volume approach to solve mass, momentum, and energy equations along the direction of the plume axis. The aggregation equation is solved using a fixed pivot technique and incorporates a sticking efficiency model developed from analog laboratory experiments of particle aggregation within a novel turbulence tower. When applied to the 2009 eruption of Redoubt Volcano, Alaska, the 1D model predicts that the majority of the plume is over‐saturated with water, leading to a high rate of aggregation. Although the mean grain size of the computed Redoubt aggregates is larger than the measured deposits, with a peak at 1 mm rather than 500 μm, the present results provide a quantitative estimate for the magnitude of aggregation in an eruption. 
    more » « less
  3. Explosive volcanic eruptions generate electrical discharges, a phenomenon termed volcanic lightning (VL). VL is increasingly well-investigated and monitored for modern eruptions, however volcanism has been active since Earth’s origin. Thus, investigating VL under different atmospheric conditions is relevant for studies of early atmospheric chemistry and potential prebiotic reactions. We developed an experimental setup to investigate VL in varying atmospheres. We present the first experiments of laboratory discharges in particle-laden jets in varying atmospheric conditions. The new experimental setup is a mobile fragmentation bomb erupting into a gas-tight particle collector tank. This setup enables the testing of different atmospheric conditions, changes in the carrier gas of the jet, changes in the pressure within the tank, monitoring of the jet behaviour, and sampling of the atmosphere together with the decompressed solid materials. We find that the number and magnitude of near-vent electrical discharge events are similar in CO2-CO and air atmospheres. 
    more » « less
  4. Volcanic Ash Transport and Dispersal Models (VATDMs) make real-time forecasts of tephra fall resulting from explosive eruptions possible. However, these predictions still mainly rely on eruption source parameters, such as erupted mass, total grain-size distribution, and plume height, gathered via thorough studies of past eruptions similar in nature. This dependency of eruption source parameters to analogous eruptions becomes particularly challenging when there are limited instances of similar events. An example is rhyodacitic to rhyolitic eruptions. This type of volcanic eruption has only been witnessed twice, at Chait´ en (2008–2009) and Cord´ on Caulle (2011− 2012), both in Chile. Here, we examine the 7.7 ka Cleetwood eruption of Mount Mazama (Oregon, USA), as a case study. This rhyodacitic eruption started explosively with two initial VEI 4, subplinian phases, and ended effusively with the emplacement of a rhyodacitic flow. We use the results of a detailed study of the proximal and medial tephra deposits as input in a VATDM to investigate the geometry and dimensions of the main plume formed during the Cleetwood eruption. We 1) constrain the erupted mass and calculate a detailed total grain-size distribution, 2) explore the Reanalysis 2 wind database to determine the direction and velocity of the local wind at the time of the eruption, and 3) use the VATDM Tephra2 with a grid-search method to estimate plume height, mass distribution within the plume, and the characteristics of tephra diffusion. We find that a vertical release of the erupted mass along a single line above the vent adequately replicates the measured mass loads but fails to simultaneously fit measured grain-size distributions at the same locations. We thus devise a method that not only accounts for a customized total grain-size distribution, real 1D wind patterns, and variable mass distribution within the plume, but also allows for adjustments to the size and location of an elliptical umbrella cloud. Using this method, we successfully replicate both local mass loads and high-resolution grain-size distributions and show that particles ≥0.125 mm from the lower Cleetwood unit were likely deposited from a 5 ×45 km2 umbrella reaching 16 km a.s.l., elongated in the direction of main wind intensity. This research contributes to enhancing the accuracy of predicting tephra transport from silicic volcanic eruptions. Moreover, it underscores the importance of utilizing grain-size data in combination with mass loads at specific locations to gain insights into the characteristics of the eruption plume, especially for eruptions that have not been directly observed. 
    more » « less
  5. Abstract Self‐ignition during the explosive eruption of mud volcanoes can create flames that in some cases reach heights that exceed hundreds of meters. To study the controls on electrical discharge in natural mud, we performed laboratory experiments using a shock‐tube apparatus to simulate explosive eruptions of mud. We vary the water content of the mud and proportions of fine particles. We measure electric discharge within a Faraday cage and we use a high‐speed video camera to image the eruption of mud and some of the electric discharge events. We find that (a) decreasing the proportion of fine particles and (b) increasing water content each suppress the number and magnitude of electric discharge events. Experimentally observed mud volcano lightning occurs where particles exit from the vent and within the jet of erupting particles. 
    more » « less