skip to main content


Title: Impulsive Volcanic Plumes Generate Volcanic Lightning and Vent Discharges: A Statistical Analysis of Sakurajima Volcano in 2015
Abstract

The origin of electrical activity accompanying volcanic ash plumes is an area of heightened interest in volcanology. However, it is unclear how intense an eruption needs to be to produce lightning flashes as opposed to “vent discharges,” which represent the smallest scale of electrical activity. This study targets 97 carefully monitored plumes <3 km high from Sakurajima volcano in Japan, from June 1 to 7, 2015. We use multiparametric measurements from sensors including a nine‐station lightning mapping array and an infrared camera to characterize plume ascent. Findings demonstrate that the impulsive, high velocity plumes (>55 m/s) were most likely to create vent discharges, whereas lightning flashes occurred in plumes with high volume flux. We identified conditions where volcanic lightning occurred without detectable vent discharges, highlighting their independent source mechanisms. Our results imply that plume dynamics govern the charging for volcanic lightning, while the characteristics of the source explosion control vent discharges.

 
more » « less
Award ID(s):
1855153
NSF-PAR ID:
10446056
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We analyze slow electric field change and lightning mapping measurements to provide insight into the characteristics of volcanic lightning and the associated implications on charging processes and the charge structure of a Vulcanian eruption plume. Data were obtained during a multi‐instrumental field campaign at Sakurajima volcano in 2015 when the Showa crater was active. We combine the electric field change and lightning mapping data from one explosive eruption on June 6, 2015 to identify individual flashes. From this, we interpret the flash type and polarity. In addition, the long‐time constant of the electric field change instrument allowed measurement of the quasi‐static field associated with charge separation in the eruption plume. We find that both intracloud and cloud‐to‐ground discharges occurred, and the polarity of cloud‐to‐ground discharges were all negative. The quasi‐static field measurement showed the plume carried a net negative charge. We calculate both the total charge transferred by cloud‐to‐ground discharges and the net charge density of the eruption plume. We find that cloud‐to‐ground discharges transfer an average of −0.41C per flash and the net charge density was −33C/. The percent error is at least 200%, due to uncertainty in the antenna gain. We show that these estimates are consistent with lightning that is 100 m in length. Further, the average flash rate during the first 8 s following the onset of eruption was five flashes per second. After that time, the flash rate abruptly decreased, which may be related to the end of gas‐thrust forcing.

     
    more » « less
  2. Abstract

    Over the last decades, remote observation tools and models have been developed to improve the forecasting of ash‐rich volcanic plumes. One challenge in these forecasts is knowing the properties at the vent, including the mass eruption rate and grain size distribution (GSD). Volcanic lightning is a common feature of explosive eruptions with high mass eruption rates of fine particles. The GSD is expected to play a major role in generating lightning in the gas thrust region via triboelectrification. Here, we experimentally investigate the electrical discharges of volcanic ash as a function of varying GSD. We employ two natural materials, a phonolitic pumice and a tholeiitic basalt (TB), and one synthetic material (soda‐lime glass beads [GB]). For each of the three materials, coarse and fine grain size fractions with known GSDs are mixed, and the particle mixture is subjected to rapid decompression. The experiments are observed using a high‐speed camera to track particle‐gas dispersion dynamics during the experiments. A Faraday cage is used to count the number and measure the magnitude of electrical discharge events. Although quite different in chemical composition, TB and GB show similar vent dynamics and lightning properties. The phonolitic pumice displays significantly different ejection dynamics and a significant reduction in lightning generation. We conclude that particle‐gas coupling during an eruption, which in turn depends on the GSD and bulk density, plays a major role in defining the generation of lightning. The presence of fines, a broad GSD, and dense particles all promote lightning.

     
    more » « less
  3. Abstract

    The electrification of volcanic plumes has been described intermittently since at least the time of Pliny the Younger and the 79 AD eruption of Vesuvius. Although sometimes disregarded in the past as secondary effects, recent work suggests that the electrical properties of volcanic plumes reveal intrinsic and otherwise inaccessible parameters of explosive eruptions. An increasing number of volcanic lightning studies across the last decade have shown that electrification is ubiquitous in volcanic plumes. Technological advances in engineering and numerical modelling, paired with close observation of recent eruptions and dedicated laboratory studies (shock-tube and current impulse experiments), show that charge generation and electrical activity are related to the physical, chemical, and dynamic processes underpinning the eruption itself. Refining our understanding of volcanic plume electrification will continue advancing the fundamental understanding of eruptive processes to improve volcano monitoring. Realizing this goal, however, requires an interdisciplinary approach at the intersection of volcanology, atmospheric science, atmospheric electricity, and engineering. Our paper summarizes the rapid and steady progress achieved in recent volcanic lightning research and provides a vision for future developments in this growing field.

     
    more » « less
  4. The 21–22 June 2019 eruption of Raikoke volcano, Russia, provided an opportunity to explore how spatial trends in volcanic lightning locations provide insights into pulsatory eruption dynamics. Using satellite-derived plume heights, we examine the development of lightning detected by Vaisala’s Global Lightning Dataset (GLD360) from eleven, closely spaced eruptive pulses. Results from one-dimensional plume modeling show that the eruptive pulses with maximum heights 9–16.5 km above sea level were capable of producing ice in the upper troposphere, which contributed variably to electrification and volcanic lightning. A key finding is that lightning locations not only followed the main dispersal direction of these ash plumes, but also tracked a lower-level cloud derived from pyroclastic density currents. We show a positive relationship between umbrella cloud expansion and the area over which lightning occurs (the ‘lightning footprint’). These observations suggest useful metrics to characterize ongoing eruptive activity in near real-time. 
    more » « less
  5. Abstract

    Magma‐water interaction can dramatically influence the explosivity of volcanic eruptions. However, syn‐ and post‐eruptive diffusion of external (non‐magmatic) water into volcanic glass remains poorly constrained and may bias interpretation of water in juvenile products. Hydrogen isotopes in ash from the 2009 eruption of Redoubt Volcano, Alaska, record syn‐eruptive hydration by vaporized glacial meltwater. Both ash aggregation and hydration occurred in the wettest regions of the plume, which resulted in the removal and deposition of the most hydrated ash in proximal areas <50 km from the vent. Diffusion models show that the high temperatures of pyroclast‐water interactions (>400°C) are more important than the cooling rate in facilitating hydration. These observations suggest that syn‐eruptive glass hydration occurred where meltwater was entrained at high temperature, in the plume margins near the vent. Ash in the drier plume interior remained insulated from entrained meltwater until it cooled sufficiently to avoid significant hydration.

     
    more » « less