We consider an ensemble of diatomic molecules resonantly coupled to an optical cavity under strong coupling conditions at normal incidence. Photodissociation dynamics is examined via direct numerical integration of the coupled Maxwell–Schrödinger equations with molecular rovibrational degrees of freedom explicitly taken into account. It is shown that the dissociation is significantly affected (slowed down) when the system is driven at its polaritonic frequencies. The observed effect is demonstrated to be of transient nature and has no classical analog. An intuitive explanation of the dissociation slowdown at polaritonic frequencies is proposed.
more »
« less
Coherent atomic orbital polarization probes the geometric phase in photodissociation of polyatomic molecules
Abstract Quantum interference between multiple pathways in molecular photodissociation often results in angular momentum polarization of atomic products and this can give deep insight into fundamental physical processes. For dissociation of diatomic molecules, the resulting orbital polarization is fully understood and consistent with quantum mechanical theory. For polyatomic molecules, however, coherent photofragment orbital polarization is frequently observed but so far has eluded theoretical explanation, and physical insight is lacking. Here, we present a model of these effects for ozone photodissociation that reveals the importance of a novel manifestation of the geometric phase. We show this geometric phase effect permits the existence of coherent polarization in cases where it would otherwise vanish, and cancels it in some cases where it might otherwise exist. The model accounts for measurements in ozone that have hitherto defied explanation, and represents a step toward a deeper understanding of coherent electronic excitation in polyatomic molecules and a new role of the geometric phase. Key PointsCoherent photofragment atomic orbital polarization reveals matter wave interference in dissociation along multiple paths.In diatomic molecules, this is well‐understood, but in polyatomic molecules, large effects are seen but these have defied a rigorous explanation.A model is developed describing these phenomena in the UV dissociation of ozone that accounts for a number of conflicting observations and reveals a new manifestation of the geometric phase in molecular physics.
more »
« less
- Award ID(s):
- 1955239
- PAR ID:
- 10377900
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Natural Sciences
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2698-6248
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The bond strength and photodissociation dynamics of MgI+ are determined by a combination of theory, photodissociation spectroscopy, and photofragment velocity map imaging. From 17 000 to 21 500 cm−1, the photodissociation spectrum of MgI+ is broad and unstructured; photofragment images in this region show perpendicular anisotropy, which is consistent with absorption to the repulsive wall of the (1) Ω = 1 or (2) Ω = 1 states followed by direct dissociation to ground state products Mg+ (2S) + I (2P3/2). Analysis of photofragment images taken at photon energies near the threshold gives a bond dissociation energy D0(Mg+-I) = 203.0 ± 1.8 kJ/mol (2.10 ± 0.02 eV; 17 000 ± 150 cm−1). At photon energies of 33 000–41 000 cm−1, exclusively I+ fragments are formed. Over most of this region, the formation of I+ is not energetically allowed via one-photon absorption from the ground state of MgI+. Images show the observed product is due to resonance enhanced two-photon dissociation. The photodissociation spectrum from 33 000 to 38 500 cm−1 shows vibrational structure, giving an average excited state vibrational spacing of 227 cm−1. This is consistent with absorption to the (3) Ω = 0+ state from ν = 0, 1 of the (1) Ω = 0+ ground state; from the (3) Ω = 0+ state, absorption of a second photon results in dissociation to Mg* (3P°J) + I+ (3PJ). From 38 500 to 41 000 cm−1, the spectrum is broad and unstructured. We attribute this region of the spectrum to one-photon dissociation of vibrationally hot MgI+ at low energy and ground state MgI+ at higher energy to form Mg (1S) + I+ (3PJ) products.more » « less
-
Abstract BACKGROUNDLimited research has explored the effect of cardiovascular risk and amyloid interplay on cognitive decline in East Asians. METHODSVascular burden was quantified using Framingham's General Cardiovascular Risk Score (FRS) in 526 Korean Brain Aging Study (KBASE) participants. Cognitive differences in groups stratified by FRS and amyloid positivity were assessed at baseline and longitudinally. RESULTSBaseline analyses revealed that amyloid‐negative (Aβ–) cognitively normal (CN) individuals with high FRS had lower cognition compared to Aβ– CN individuals with low FRS (p < 0.0001). Longitudinally, amyloid pathology predominantly drove cognitive decline, while FRS alone had negligible effects on cognition in CN and mild cognitive impairment (MCI) groups. CONCLUSIONOur findings indicate that managing vascular risk may be crucial in preserving cognition in Aβ– individuals early on and before the clinical manifestation of dementia. Within the CN and MCI groups, irrespective of FRS status, amyloid‐positive individuals had worse cognitive performance than Aβ– individuals. HighlightsVascular risk significantly affects cognition in amyloid‐negative older Koreans.Amyloid‐negative CN older adults with high vascular risk had lower baseline cognition.Amyloid pathology drives cognitive decline in CN and MCI, regardless of vascular risk.The study underscores the impact of vascular health on the AD disease spectrum.more » « less
-
Abstract Previous research has shown that when domain‐general transitional probability (TP) cues to word segmentation are in conflict with language‐specific stress cues, English‐learning 5‐ and 7‐month‐olds rely on TP, whereas 9‐month‐olds rely on stress. In two artificial languages, we evaluated English‐learning infants’ sensitivity to TP cues to word segmentation vis‐a‐vis language‐specific vowel phonotactic (VP) cues—English words do not end in lax vowels. These cues were either consistent or conflicting. When these cues were in conflict, 10‐month‐olds relied on the VP cues, whereas 5‐month‐olds relied on TP. These findings align with statistical bootstrapping accounts, where infants initially use domain‐general distributional information for word segmentation, and subsequently discover language‐specific patterns based on segmented words. Research HighlightsResearch indicates that when transitional probability (TP) conflicts with stress cues for word segmentation, English‐learning 9‐month‐olds rely on stress, whereas younger infants rely on TP.In two artificial languages, we evaluated English‐learning infants’ sensitivity to TP versus vowel phonotactic (VP) cues for word segmentation.When these cues conflicted, 10‐month‐olds relied on VPs, whereas 5‐month‐olds relied on TP.These findings align with statistical bootstrapping accounts, where infants first utilize domain‐general distributional information for word segmentation, and then identify language‐specific patterns from segmented words.more » « less
-
Abstract Number sense is fundamental to the development of numerical problem‐solving skills. In early childhood, children establish associations between non‐symbolic (e.g., a set of dots) and symbolic (e.g., Arabic numerals) representations of quantity. The developmental estrangement theory proposes that the relationship between non‐symbolic and symbolic representations of quantity evolves with age, with increased dissociation across development. Consistent with this theory, recent research suggests that cross‐format neural representational similarity (NRS) between non‐symbolic and symbolic quantities is correlated with arithmetic fluency in children but not in adolescents. However, it is not known if short‐term training (STT) can induce similar changes as long‐term development. In this study, children aged 7–10 years underwent a theoretically motivated 4‐week number sense training. Using multivariate neural pattern analysis, we investigated whether short‐term learning could modify the relation between cross‐format NRS and arithmetic skills. Our results revealed a significant correlation between cross‐format NRS and arithmetic fluency in distributed brain regions, including the parietal and prefrontal cortices, prior to training. However, this association was no longer observed after training, and multivariate predictive models confirmed these findings. Our findings provide evidence that intensive STT during early childhood can promote behavioral improvements and neural plasticity that resemble and recapitulate long‐term neurodevelopmental changes that occur from childhood to adolescence. More generally, our study contributes to our understanding of the malleability of number sense and highlights the potential for targeted interventions to shape neurodevelopmental trajectories in early childhood. Research HighlightsWe tested the hypothesis that short‐term number sense training induces the dissociation of symbolic numbers from non‐symbolic representations of quantity in children.We leveraged a theoretically motivated intervention and multivariate pattern analysis to determine training‐induced neurocognitive changes in the relation between number sense and arithmetic problem‐solving skills.Neural representational similarity between non‐symbolic and symbolic quantity representations was correlated with arithmetic skills before training but not after training.Short‐term training recapitulates long‐term neurodevelopmental changes associated with numerical problem‐solving from childhood to adolescence.more » « less
An official website of the United States government
