skip to main content

Title: Quantum Metrology with a Molecular Lattice Clock and State-Selected Photodissociation of Ultracold Molecules
Over the past few decades, rapid development of laser cooling techniques and narrow-linewidth lasers have allowed atom-based quantum clocks to achieve unprecedented precision. Techniques originally developed for atomic clocks can be extended to ultracold molecules, with applications ranging from quantum-state-controlled ultracold chemistry to searches for new physics. Because of the richness of molecular structure, quantum metrology based on molecules provides possibilities for testing physics that is beyond the scope of traditional atomic clocks. This thesis presents the work performed to establish a state-of-the-art quantum clock based on ultracold molecules. The molecular clock is based on a frequency difference between two vibrational levels in the electronic ground state of 88Sr2 diatomic molecules. Such a clock allows us test molecular QED, improve constraints on nanometer-scale gravity, and potentially provide a model-independent test of temporal variations of the proton-electron mass ratio. Trap-insensitive spectroscopy is crucial for extending coherent molecule-light interactions and achieving a high quality factor Q. We have demonstrated a magic wavelength technique for molecules by manipulating the optical lattice frequency near narrow polarizability resonances. This general technique allows us to increase the coherence time to tens of ms, an improvement of a factor of several thousand, and to narrow the linewidth of a 25 THz vibrational transition initially to 30 Hz. This width corresponds to the quality factor Q = 8 × 10^11. Besides the molecular quantum metrology, investigations of novel phenomena in state-selected photodissociation are also described in this thesis, including magnetic-field control of photodissociation and observation of the crossover from ultracold to quasiclassical chemistry.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Columbia University thesis
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Narrow linewidth visible light lasers are critical for atomic, molecular and optical (AMO) physics including atomic clocks, quantum computing, atomic and molecular spectroscopy, and sensing. Stimulated Brillouin scattering (SBS) is a promising approach to realize highly coherent on-chip visible light laser emission. Here we report demonstration of a visible light photonic integrated Brillouin laser, with emission at 674 nm, a 14.7 mW optical threshold, corresponding to a threshold density of 4.92 mW μm −2 , and a 269 Hz linewidth. Significant advances in visible light silicon nitride/silica all-waveguide resonators are achieved to overcome barriers to SBS in the visible, including 1 dB/meter waveguide losses, 55.4 million quality factor (Q), and measurement of the 25.110 GHz Stokes frequency shift and 290 MHz gain bandwidth. This advancement in integrated ultra-narrow linewidth visible wavelength SBS lasers opens the door to compact quantum and atomic systems and implementation of increasingly complex AMO based physics and experiments. 
    more » « less
  2. Modulation-based control and locking of lasers, filters and other photonic components is a ubiquitous function across many applications that span the visible to infrared (IR), including atomic, molecular and optical (AMO), quantum sciences, fiber communications, metrology, and microwave photonics. Today, modulators used to realize these control functions consist of high-power bulk-optic components for tuning, sideband modulation, and phase and frequency shifting, while providing low optical insertion loss and operation from DC to 10s of MHz. In order to reduce the size, weight and cost of these applications and improve their scalability and reliability, modulation control functions need to be implemented in a low loss, wafer-scale CMOS-compatible photonic integration platform. The silicon nitride integration platform has been successful at realizing extremely low waveguide losses across the visible to infrared and components including high performance lasers, filters, resonators, stabilization cavities, and optical frequency combs. Yet, progress towards implementing low loss, low power modulators in the silicon nitride platform, while maintaining wafer-scale process compatibility has been limited. Here we report a significant advance in integration of a piezo-electric (PZT, lead zirconate titanate) actuated micro-ring modulation in a fully-planar, wafer-scale silicon nitride platform, that maintains low optical loss (0.03 dB/cm in a 625 µm resonator) at 1550 nm, with an order of magnitude increase in bandwidth (DC - 15 MHz 3-dB and DC - 25 MHz 6-dB) and order of magnitude lower power consumption of 20 nW improvement over prior PZT modulators. The modulator provides a >14 dB extinction ratio (ER) and 7.1 million quality-factor (Q) over the entire 4 GHz tuning range, a tuning efficiency of 162 MHz/V, and delivers the linearity required for control applications with 65.1 dB·Hz2/3and 73.8 dB·Hz2/3third-order intermodulation distortion (IMD3) spurious free dynamic range (SFDR) at 1 MHz and 10 MHz respectively. We demonstrate two control applications, laser stabilization in a Pound-Drever Hall (PDH) lock loop, reducing laser frequency noise by 40 dB, and as a laser carrier tracking filter. This PZT modulator design can be extended to the visible in the ultra-low loss silicon nitride platform with minor waveguide design changes. This integration of PZT modulation in the ultra-low loss silicon nitride waveguide platform enables modulator control functions in a wide range of visible to IR applications such as atomic and molecular transition locking for cooling, trapping and probing, controllable optical frequency combs, low-power external cavity tunable lasers, quantum computers, sensors and communications, atomic clocks, and tunable ultra-low linewidth lasers and ultra-low phase noise microwave synthesizers.

    more » « less
  3. Rapid progress in atomic, molecular, and optical (AMO) physics techniques enabled the creation of ultracold samples of molecular species and opened opportunities to explore chemistry in the ultralow temperature regime. In particular, both the external and internal quantum degrees of freedom of the reactant atoms and molecules are controlled, allowing studies that explored the role of the long-range potential in ultracold reactions. The kinetics of these reactions have typically been determined using the loss of reactants as proxies. To extend such studies into the short-range, we developed an experimental apparatus that combines the production of quantum-state-selected ultracold KRb molecules with ion mass and kinetic energy spectrometry, and directly observed KRb + KRb reaction intermediates and products [M.-G. Hu and Y. Liu, et al. , Science , 2019, 366 , 1111]. Here, we present the apparatus in detail. For future studies that aim for detecting the quantum states of the reaction products, we demonstrate a photodissociation based scheme to calibrate the ion kinetic energy spectrometer at low energies. 
    more » « less
  4. Precision laser spectroscopy is key to many developments in atomic and molecular physics and the advancement of related technologies such as atomic clocks and sensors. However, in important spectroscopic scenarios, such as astronomy and remote sensing, the light is of thermal origin, and interferometric or diffractive spectrometers typically replace laser spectroscopy. In this work, we employ laser-based heterodyne radiometry to measure incoherent light sources in the near-infrared and introduce techniques for absolute frequency calibration with a laser frequency comb. Measuring the solar continuum, we obtain a signal-to-noise ratio that matches the fundamental quantum-limited prediction given by the thermal photon distribution and our system’s efficiency, bandwidth, and averaging time. With resolving powerR∼<#comment/>106, we determine the center frequency of an iron line in the solar spectrum to sub-MHz absolute frequency uncertainty in under 10 min, a fractional precision 1/4000 the linewidth. Additionally, we propose concepts that take advantage of refractive beam shaping to decrease the effects of pointing instabilities by100×<#comment/>, and of frequency comb multiplexing to increase data acquisition rates and spectral bandwidths by comparable factors. Taken together, our work brings the power of telecommunications photonics and the precision of frequency comb metrology to laser heterodyne radiometry, with implications for solar and astronomical spectroscopy, remote sensing, and precise Doppler velocimetry.

    more » « less
  5. The integration of stabilized lasers, sources that generate spectrally pure light, will provide compact, low-cost solutions for applications including quantum information sciences, precision navigation and timing, metrology, and high-capacity fiber communications. We report a significant advancement in this field, demonstrating stabilization of an integrated waveguide Brillouin laser to an integrated waveguide reference cavity, where both resonators are fabricated using the same CMOS-compatible integration platform. We demonstrate reduction of the free running Brillouin laser linewidth to a 292 Hz integral linewidth and carrier stabilization to a 4.9 × 10 −13 fractional frequency at 8 ms reaching the cavity-intrinsic thermorefractive noise limit for frequencies down to 80 Hz. We achieve this level of performance using a pair of 56.4 × 10 6 quality factor Si 3 N 4 waveguide ring-resonators that reduce the high-frequency noise by the nonlinear Brillouin process and the low-frequency noise by Pound–Drever–Hall locking to the ultra-low loss resonator. These results represent an important step toward integrated stabilized lasers with reduced sensitivity to environmental disturbances for atomic, molecular, and optical physics (AMO), quantum information processing and sensing, and other precision scientific, sensing, and communications applications. 
    more » « less