- Award ID(s):
- 1724221
- NSF-PAR ID:
- 10377904
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The learning of stimulus-outcome associations allows for predictions about the environment. Ventral striatum and dopaminergic midbrain neurons form a larger network for generating reward prediction signals from sensory cues. Yet, the network plasticity mechanisms to generate predictive signals in these distributed circuits have not been entirely clarified. Also, direct evidence of the underlying interregional assembly formation and information transfer is still missing. Here we show that phasic dopamine is sufficient to reinforce the distinctness of stimulus representations in the ventral striatum even in the absence of reward. Upon such reinforcement, striatal stimulus encoding gives rise to interregional assemblies that drive dopaminergic neurons during stimulus-outcome learning. These assemblies dynamically encode the predicted reward value of conditioned stimuli. Together, our data reveal that ventral striatal and midbrain reward networks form a reinforcing loop to generate reward prediction coding.more » « less
-
Morrison, Abigail (Ed.)The Drosophila mushroom body exhibits dopamine dependent synaptic plasticity that underlies the acquisition of associative memories. Recordings of dopamine neurons in this system have identified signals related to external reinforcement such as reward and punishment. However, other factors including locomotion, novelty, reward expectation, and internal state have also recently been shown to modulate dopamine neurons. This heterogeneity is at odds with typical modeling approaches in which these neurons are assumed to encode a global, scalar error signal. How is dopamine dependent plasticity coordinated in the presence of such heterogeneity? We develop a modeling approach that infers a pattern of dopamine activity sufficient to solve defined behavioral tasks, given architectural constraints informed by knowledge of mushroom body circuitry. Model dopamine neurons exhibit diverse tuning to task parameters while nonetheless producing coherent learned behaviors. Notably, reward prediction error emerges as a mode of population activity distributed across these neurons. Our results provide a mechanistic framework that accounts for the heterogeneity of dopamine activity during learning and behavior.more » « less
-
null (Ed.)Neural codes for sensory inputs have been hypothesized to reside in a broader space defined by ongoing patterns of spontaneous activity. To understand the structure of this spontaneous activity in the olfactory system, we performed high-density recordings of neural populations in the main olfactory bulb of awake mice. We observed changes in pairwise correlations of spontaneous activity between mitral and tufted (M/T) cells when animals were running, which resulted in an increase in the entropy of the population. Surprisingly, pairwise maximum entropy models that described the population activity using only assumptions about the firing rates and correlations of neurons were better at predicting the global structure of activity when animals were stationary as compared to when they were running, implying that higher order (3rd, 4th order) interactions governed population activity during locomotion. Taken together, we found that locomotion alters the functional interactions that shape spontaneous population activity at the earliest stages of olfactory processing, one synapse away from the sensory receptors in the nasal epithelium. These data suggest that the coding space available for sensory representations responds adaptively to the animal’s behavioral state. NEW & NOTEWORTHY The organization and structure of spontaneous population activity in the olfactory system places constraints of how odor information is represented. Using high-density electrophysiological recordings of mitral and tufted cells, we found that running increases the dimensionality of spontaneous activity, implicating higher order interactions among neurons during locomotion. Behavior, thus, flexibly alters neuronal activity at the earliest stages of sensory processing.more » « less
-
Abstract The ability to identify odors in the environment is crucial for survival and reproduction. However, whether olfactory processing in higher-order brain centers is influenced by an animal’s physiological condition is unknown. We used
in vivo neuron and local field potential (LFP) recordings from the ventral telencephalon of dominant and subordinate male cichlids to test the hypothesis that response properties of olfactory neurons differ with social status. Dominant males had a high percentage of neurons that responded to several odor types, suggesting broad tuning or differential sensitivity when males are reproductively active and defending a territory. A greater percentage of neurons in dominant males also responded to sex- and food-related odors, while a greater percentage of neurons in subordinate males responded to complex odors collected from behaving dominant males, possibly as a mechanism to mediate social suppression and allow subordinates to identify opportunities to rise in rank. Odor-evoked LFP spectral densities, indicative of synaptic inputs, were also 2–3-fold greater in dominant males, demonstrating status-dependent differences in processing possibly linking olfactory and other neural inputs to goal-directed behaviors. For the first time we reveal social and reproductive-state plasticity in olfactory processing neurons in the vertebrate forebrain that are associated with status-specific lifestyles. -
null (Ed.)Detecting synaptic connections using large-scale extracellular spike recordings presents a statistical challenge. Although previous methods often treat the detection of each putative connection as a separate hypothesis test, here we develop a modeling approach that infers synaptic connections while incorporating circuit properties learned from the whole network. We use an extension of the generalized linear model framework to describe the cross-correlograms between pairs of neurons and separate correlograms into two parts: a slowly varying effect due to background fluctuations and a fast, transient effect due to the synapse. We then use the observations from all putative connections in the recording to estimate two network properties: the presynaptic neuron type (excitatory or inhibitory) and the relationship between synaptic latency and distance between neurons. Constraining the presynaptic neuron’s type, synaptic latencies, and time constants improves synapse detection. In data from simulated networks, this model outperforms two previously developed synapse detection methods, especially on the weak connections. We also apply our model to in vitro multielectrode array recordings from the mouse somatosensory cortex. Here, our model automatically recovers plausible connections from hundreds of neurons, and the properties of the putative connections are largely consistent with previous research. NEW & NOTEWORTHY Detecting synaptic connections using large-scale extracellular spike recordings is a difficult statistical problem. Here, we develop an extension of a generalized linear model that explicitly separates fast synaptic effects and slow background fluctuations in cross-correlograms between pairs of neurons while incorporating circuit properties learned from the whole network. This model outperforms two previously developed synapse detection methods in the simulated networks and recovers plausible connections from hundreds of neurons in in vitro multielectrode array data.more » « less