Abstract Data collected by two buoy arrays that operated during the ice seasons of 2014/2015 and 2016/2017 were used to characterize annual cycles of ice motion and deformation in the western Arctic Ocean. An anomalously strong and weak Beaufort Gyre in 2014/2015 and 2016/2017 induced generally anticyclonic and cyclonic sea ice drift during 2014/2015 and 2016/2017, respectively. Cyclonic ice motion resulted in higher contributions of ice divergence to total ice deformation in 2016/2017 than in 2014/2015. In 2014, the autumn ice concentration and multiyear ice coverage were higher than in 2016; consequently, the response of ice motion to wind forcing was weak, and less ice deformation was observed in autumn 2014. During the autumn‐winter transition, the ice‐wind speed ratio, ice deformation rate and its spatial and temporal scaling exponents, and localization of ice deformation decreased markedly in both 2014/2015 and 2016/2017 as a result of freeze‐up and consolidation of ice floes. Such dynamic behavior was maintained through to spring with the further thickening of ice cover. Ice deformation increased due to weakened ice strength as summer approached. The amplitude of the annual cycle of ice deformation rate in the western Arctic Ocean in 2014/2015 and especially in 2016/2017 was larger than that observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) program in 1997/1998. We attribute this phenomenon to ice loss during the recent summers, especially of thick multiyear ice.
more »
« less
A new state-dependent parameterization for the free drift of sea ice
Abstract. Free-drift estimates of sea ice motion are necessary to produce a seamless observational record combining buoy and satellite-derived sea ice motionvectors. We develop a new parameterization for the free drift of sea ice based on wind forcing, wind turning angle, sea ice state variables(thickness and concentration), and estimates of the ocean currents. Given the fact that the spatial distribution of the wind–ice–ocean transfercoefficient has a similar structure to that of the spatial distribution of sea ice thickness, we take the standard free-drift equation and introducea wind–ice–ocean transfer coefficient that scales linearly with ice thickness. Results show a mean bias error of −0.5 cm s−1(low-speed bias) and a root-mean-square error of 5.1 cm s−1, considering daily buoy drift data as truth. This represents a 35 %reduction of the error on drift speed compared to the free-drift estimates used in the Polar Pathfinder dataset (Tschudi et al., 2019b). Thethickness-dependent transfer coefficient provides an improved seasonality and long-term trend of the sea ice drift speed, with a minimum (maximum)drift speed in May (October), compared to July (January) for the constant transfer coefficient parameterizations which simply follow the peak inmean surface wind stresses. Over the 1979–2019 period, the trend in sea ice drift in this new model is +0.45 cm s−1 per decadecompared with +0.39 cm s−1 per decade from the buoy observations, whereas there is essentially no trend in a free-driftparameterization with a constant transfer coefficient (−0.09 cm s−1 per decade) or the Polar Pathfinder free-drift input data(−0.01 cm s−1 per decade). The optimal wind turning angle obtained from a least-squares fitting is 25∘, resulting in a meanerror and a root-mean-square error of +3 and 42∘ on the direction of the drift, respectively. The ocean current estimates obtained from theminimization procedure resolve key large-scale features such as the Beaufort Gyre and Transpolar Drift Stream and are in good agreement with oceanstate estimates from the ECCO, GLORYS, and PIOMAS ice–ocean reanalyses, as well as geostrophic currents from dynamical ocean topography, with aroot-mean-square difference of 2.4, 2.9, 2.6, and 3.8 cm s−1, respectively. Finally, a repeat of the analysis on two sub-sections of thetime series (pre- and post-2000) clearly shows the acceleration of the Beaufort Gyre (particularly along the Alaskan coastline) and an expansion ofthe gyre in the post-2000s, concurrent with a thinning of the sea ice cover and the observed acceleration of the ice drift speed and oceancurrents. This new dataset is publicly available for complementing merged observation-based sea ice drift datasets that include satellite and buoydrift records.
more »
« less
- Award ID(s):
- 1928126
- PAR ID:
- 10377946
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 533 to 557
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
These data were collected on the CCGS (Canadian Coast Guard) Louis St. Laurent during BGOS (Beaufort Gyre Observing System) research cruises in 2012-2014 and 2016-2021 in the Beaufort Sea area. They are underway pCO2 (Partial pressure of carbon dioxide) data collected using an equilibrator-infrared method (SUPER CO2 system from Sunburst Sensors). Ancillary data for calculation of air-sea CO fluxes include temperature, salinity, atmospheric CO2, wind speed, and gas transfer velocity (calculated from Wanninkhof et al. (2009). Fluxes are not corrected for fractional ice-coverage. The specific goal of the study is to continue to operate an Arctic Observing Network (AON) for the measurement of the partial pressure of CO2 (pCO2), pH, and dissolved O2 (DO) focused on the surface waters of the Arctic Ocean (specifically, the Canada Basin). These data were collected on the CCGS (Canadian Coast Guard) Louis St. Laurent during a BGOS (Beaufort Gyre Observing System) research cruise in the Beaufort Sea area. It is underway pCO2 (partial pressure of carbon dioxide) data collected using an equilibrator-infrared method (SUPER CO2 system from Sunburst Sensors). Ancillary data for calculation of air-sea CO2 fluxes include temperature, salinity, atmospheric CO2.more » « less
-
Abstract A theory for the mean ice thickness and the Transpolar Drift in the Arctic Ocean is developed. Asymptotic expansions of the ice momentum and thickness equations are used to derive analytic expressions for the leading-order ice thickness and velocity fields subject to wind stress forcing and heat loss to the atmosphere. The theory is most appropriate for the eastern and central Arctic, but not for the region of the Beaufort Gyre subject to anticyclonic wind stress curl. The scale analysis reveals two distinct regimes: a thin ice regime in the eastern Arctic and a thick ice regime in the western Arctic. In the eastern Arctic, the ice drift is controlled by a balance between wind and ocean drag, while the ice thickness is controlled by heat loss to the atmosphere. In contrast, in the western Arctic, the ice thickness is determined by a balance between wind and internal ice stress, while the drift is indirectly controlled by heat loss to the atmosphere. The southward flow toward Fram Strait is forced by the across-wind gradient in ice thickness. The basic predictions for ice thickness, heat loss, ice volume, and ice export from the theory compare well with an idealized, coupled ocean–ice numerical model over a wide range of parameter space. The theory indicates that increasing atmospheric temperatures or wind speed result in a decrease in maximum ice thickness and ice volume. Increasing temperatures also result in a decrease in heat loss to the atmosphere and ice export through Fram Strait, while increasing winds drive increased heat loss and ice export.more » « less
-
null (Ed.)Abstract Arctic Ocean surface circulation change should not be viewed as the strength of the anticyclonic Beaufort Gyre. While the Beaufort Gyre is a dominant feature of average Arctic Ocean surface circulation, empirical orthogonal function analysis of dynamic height (1950–89) and satellite altimetry–derived dynamic ocean topography (2004–19) show the primary pattern of variability in its cyclonic mode is dominated by a depression of the sea surface and cyclonic surface circulation on the Russian side of the Arctic Ocean. Changes in surface circulation after Arctic Oscillation (AO) maxima in 1989 and 2007–08 and after an AO minimum in 2010 indicate the cyclonic mode is forced by the AO with a lag of about 1 year. Associated with a one standard deviation increase in the average AO starting in the early 1990s, Arctic Ocean surface circulation underwent a cyclonic shift evidenced by increased spatial-average vorticity. Under increased AO, the cyclonic mode complex also includes increased export of sea ice and near-surface freshwater, a changed path of Eurasian runoff, a freshened Beaufort Sea, and weakened cold halocline layer that insulates sea ice from Atlantic water heat, an impact compounded by increased Atlantic Water inflow and cyclonic circulation at depth. The cyclonic mode’s connection with the AO is important because the AO is a major global scale climate index predicted to increase with global warming. Given the present bias in concentration of in situ measurements in the Beaufort Gyre and Transpolar Drift, a coordinated effort should be made to better observe the cyclonic mode.more » « less
-
Abstract The Arctic Ocean has turned from a perennial ice‐covered ocean into a seasonally ice‐free ocean in recent decades. Such a shift in the air‐ice‐sea interface has resulted in substantial changes in the Arctic carbon cycle and related biogeochemical processes. To quantitatively evaluate how the oceanic CO2sink responds to rapid sea ice loss and to provide a mechanistic explanation, here we examined the air‐sea CO2flux and the regional CO2sink in the western Arctic Ocean from 1994 to 2019 by two complementary approaches: observation‐based estimation and a data‐driven box model evaluation. ThepCO2observations and model results showed that summer CO2uptake significantly increased by about 1.4 ± 0.6 Tg C decade−1in the Chukchi Sea, primarily due to a longer ice‐free period, a larger open area, and an increased primary production. However, no statistically significant increase in CO2sink was found in the Canada Basin and the Beaufort Sea based on both observations and modeled results. The reduced sea ice coverage in summer in the Canada Basin and the enhanced wind speed in the Beaufort Sea potentially promoted CO2uptake, which was, however, counteracted by a rapidly decreased air‐seapCO2gradient therein. Therefore, the current and future Arctic Ocean CO2uptake trends cannot be sufficiently reflected by the air‐seapCO2gradient alone because of the sea ice variations and other environmental factors.more » « less
An official website of the United States government

