skip to main content


Title: Annual Cycles of Sea Ice Motion and Deformation Derived From Buoy Measurements in the Western Arctic Ocean Over Two Ice Seasons
Abstract

Data collected by two buoy arrays that operated during the ice seasons of 2014/2015 and 2016/2017 were used to characterize annual cycles of ice motion and deformation in the western Arctic Ocean. An anomalously strong and weak Beaufort Gyre in 2014/2015 and 2016/2017 induced generally anticyclonic and cyclonic sea ice drift during 2014/2015 and 2016/2017, respectively. Cyclonic ice motion resulted in higher contributions of ice divergence to total ice deformation in 2016/2017 than in 2014/2015. In 2014, the autumn ice concentration and multiyear ice coverage were higher than in 2016; consequently, the response of ice motion to wind forcing was weak, and less ice deformation was observed in autumn 2014. During the autumn‐winter transition, the ice‐wind speed ratio, ice deformation rate and its spatial and temporal scaling exponents, and localization of ice deformation decreased markedly in both 2014/2015 and 2016/2017 as a result of freeze‐up and consolidation of ice floes. Such dynamic behavior was maintained through to spring with the further thickening of ice cover. Ice deformation increased due to weakened ice strength as summer approached. The amplitude of the annual cycle of ice deformation rate in the western Arctic Ocean in 2014/2015 and especially in 2016/2017 was larger than that observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) program in 1997/1998. We attribute this phenomenon to ice loss during the recent summers, especially of thick multiyear ice.

 
more » « less
Award ID(s):
1722729
NSF-PAR ID:
10446804
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
125
Issue:
6
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The accuracy of sea-ice motion products provided by the National Snow and Ice Data Center (NSIDC) and the Ocean and Sea Ice Satellite Application Facility (OSI-SAF) was validated with data collected by ice drifters that were deployed in the western Arctic Ocean in 2014 and 2016. Data from both NSIDC and OSI-SAF products exhibited statistically significant ( p < 0.001) correlation with drifter data. The OSI-SAF product tended to overestimate ice speed, while underestimation was demonstrated for the NSIDC product, especially for the melt season and the marginal ice zone. Monthly Lagrangian trajectories of ice floes were reconstructed using the products. Larger spatial variability in the deviation between NSIDC and drifter trajectories was observed than that of OSI-SAF, and seasonal variability in the deviation for NSIDC was observed. Furthermore, trajectories reconstructed using the NSIDC product were sensitive to variations in sea-ice concentration. The feasibility of using remote-sensing products to characterize sea-ice deformation was assessed by evaluating the distance between two arbitrary positions as estimated by the products. Compared with the OSI-SAF product, relative errors are lower (<11.6%), and spatial-temporal resolutions are higher in the NSIDC product, which makes it more suitable for estimating sea-ice deformation. 
    more » « less
  2. Abstract

    This study examined the contribution of the Pacific decadal oscillation (PDO) to the record-breaking 2013–17 drought in the Korean Peninsula. The meteorological drought signal, measured by the Standardized Precipitation Index (SPI), in 2013 and 2016 co-occurred with a heat wave. The positive phase of the PDO during the mid-2010s was responsible for the precipitation deficit, particularly in 2014, 2015, and 2017, resulting in 5 years of meteorological drought. The enhanced atmospheric heating anomalies over the subtropical central Pacific, induced by the in situ PDO-related sea surface temperature (SST) warming, led to a low-atmospheric cyclonic flow centered over the midlatitude Pacific. The northerly wind anomalies at the western edge of this low-level cyclonic flow were responsible for the horizontal negative advection of moist energy, which contributed to the decreased precipitation and the resultant negative SPI over the Korean Peninsula in 2014, 2015, and 2017. The large-ensemble simulation supported the observational findings that the composited SST anomalies during the 5 years of persistent drought exhibited prominent and persistent SST warming over the subtropical central Pacific, along with large-scale cyclonic flow over the North Pacific. The findings of this study imply that the SST anomalies over the North Pacific and subtropical central Pacific can be a predictable source to potentially increase the ability to forecast multiyear droughts over the Korean Peninsula.

     
    more » « less
  3. Abstract

    The Bering Strait oceanic heat transport influences seasonal sea ice retreat and advance in the Chukchi Sea. Monitored since 1990, it depends on water temperature and factors controlling the volume transport, assumed to be local winds in the strait and an oceanic pressure difference between the Pacific and Arctic oceans (the “pressure head”). Recent work suggests that variability in the pressure head, especially during summer, relates to the strength of the zonal wind in the East Siberian Sea that raises or drops sea surface height in this area via Ekman transport. We confirm that westward winds in the East Siberian Sea relate to a broader central Arctic pattern of high sea level pressure and note that anticyclonic winds over the central Arctic Ocean also favor low September sea ice extent for the Arctic as a whole by promoting ice convergence and positive temperature anomalies. Month‐to‐month persistence in the volume transport and atmospheric circulation patterns is low, but the period 1980–2017 had a significant summertime (June–August) trend toward higher sea level pressure over the central Arctic Ocean, favoring increased transports. Some recent large heat transports are associated with high water temperatures, consistent with persistence of open water in the Chukchi Sea into winter and early ice retreat in spring. The highest heat transport recorded, October 2016, resulted from high water temperatures and ideal wind conditions yielding a record‐high volume transport. November and December 2005, the only months with southward volume (and thus heat) transports, were associated with southward winds in the strait.

     
    more » « less
  4. Climate change is affecting the Arctic at an unprecedented rate, potentially releasing substantial amounts of greenhouse gases (CO2 (carbon dioxide) and CH4 (Methane)) from tundra ecosystems. Measuring greenhouse gas emissions in the Arctic, particularly outside of the summer period, is very challenging due to extreme weather conditions. This research project provided the first annual balance of both CH4 and CO2 fluxes in a total of five sites spanning a 300Km transect across the North Slope of Alaska (three sites in Barrow, one site in Aquasuk, and one site in Ivotuk). The results from the continuous year-round CH4 fluxes across these sites showed how cumulative emissions for the cold season accounted on average for 50% of the annual budget (Zona et al., 2016), a notably higher contribution than previously modelled, and also higher than observed in boreal Alaska. The analysis of the cold period CH4 fluxes suggested that the presence of an unfrozen soil layer in the fall and early winter was a major control on cold season CH4 emissions (Zona et al., 2016). We also cross-compared all instruments measuring ecosystem scale CO2 and CH4 fluxes operating at our sites, which allowed us to make recommendation of the best performing instruments under these extreme weather conditions. The best performing instruments were closed path analyzers and intermittently heated sonic anemometers which had the highest final data cover. A continuously heated anemometer increased data coverage relative to non-heated anemometers, but resulted in an overestimation of the fluxes (Goodrich et al., 2016). We developed an intermittent heating strategy that was only activated when the data quality was low, and appeared to be the preferable method to prevent icing while avoiding biases to the measurements. Closed and open-path analyzers showed good agreement, but data coverage was much greater when using closed-path analyzers, especially during winter (Goodrich et al., 2016). Given the importance of vegetation on greenhouse gas emissions, we also investigated the role of different vegetation types under a broad range of environmental conditions on the CH4 emissions. We found that vegetation type can be a very useful tool to describe the spatial variability in CH4 emissions over the landscape (McEwing et al., 2015), and that just two vegetation types were able to explain about 50% of the variability in CH4 fluxes across ecosystems even hundreds of kilometers apart (Davidson et al., 2016a). To upscale these plot scale fluxes we completed high resolution vegetation maps in each of our tower sites (Davidson et al., 2016b), which are the finest resolution maps currently available from these sites, and also contributed to larger scale mapping effort (Walker et al., 2016). The soil microbial analysis from soil cores collected across our sites showed an association between overall microbial diversity and latitude, with a higher diversity found in the northerly site and lower diversity in the southerly site, contrary to current knowledge (Wagner et al., accepted). We also measured CH4 and CO2 concentrations in the soil, which showed to be orders of magnitude higher than in the atmosphere (Arndt et al., 2016). Our results contributed to model development (Xu et al., 2016; Kobayashi et al., 2016; Liljedahl et al., 2016; Luus et al., 2017), and to a wide variety of other projects as shown by the hundreds of download of our data from Ameriflux. Overall, this grant resulted in the publication of 25 peer reviewed journal articles, including in high impact factor journals such as PNAS (Proceedings of the National Academy of Sciences of the United States of America), and Nature Climate Change, in addition to five more in review and in preparation, and supported the research of seven PhD students, two master students, and ten undergraduate students. 
    more » « less
  5. Abstract

    To track sea ice motion, four ice‐tethered buoys were deployed at 84.6°N and 144.3°W, 87.3°N and 172.3°W, 81.1°N and 157.4°W, and 82.8°N and 166.5°W in summers of 2008, 2010, 2014, and 2016, respectively. In addition, the remote sensed ice motion product provided by National Snow and Ice Data Center was used to reconstruct backward and forward ice drifting trajectories from the buoy deployment sites during 1979–2016. Sea ice in the central Arctic Ocean in late summer is trending to have travelled from lower latitudes, and to be advected to the region more involved in the Transpolar Drift Stream (TDS) during 1979–2016. The strengthened TDS has played a crucial role in Arctic sea ice loss from a dynamic perspective. The trajectory of ice is found to be significantly related to atmosphere circulation indices. The Central Arctic Index (CAI), defined as the difference in sea level pressure between 84°N, 90°W and 84°N, 90°E, can explain 34–40% of the meridional displacement along the backward trajectories, and it can explain 27–40% of the zonal displacement along the forward trajectories. The winter Beaufort High (BH) anomaly can explain 18–27% of the zonal displacement. Under high positive CAI values or high negative winter BH anomalies, floes from the central Arctic tended to be advected out of the Arctic Ocean through Fram Strait or other marginal gateways. Conversely, under high negative CAI values or high positive winter BH anomalies, ice tended to become trapped within a region close to the North Pole or it drifted into the Beaufort Gyre region. The long‐term trend and spatial change in Arctic surface air temperature were more remarkable during the freezing season than the melt season because most energy from the lower troposphere is used to melt sea ice and warm the upper ocean during summer.

     
    more » « less