skip to main content


Title: Supporting Health and Medical Decision Making: Findings and Insights from Fuzzy-Trace Theory
Theory—understanding mental processes that drive decisions—is important to help patients and providers make decisions that reflect medical advances and personal values. Building on a 2008 review, we summarize current tenets of fuzzy-trace theory (FTT) in light of new evidence that provides insight regarding mental representations of options and how such representations connect to values and evoke emotions. We discuss implications for communicating risks, preventing risky behaviors, discouraging misinformation, and choosing appropriate treatments. Findings suggest that simple, fuzzy but meaningful gist representations of information often determine decisions. Within minutes of conversing with their doctor, reading a health-related web post, or processing other health information, patients rely on gist memories of that information rather than verbatim details. This fuzzy-processing preference explains puzzles and paradoxes in how patients (and sometimes providers) think about probabilities (e.g., “50-50” chance), outcomes of treatment (e.g., with antibiotics), experiences of pain, end-of-life decisions, memories for medication instructions, symptoms of concussion, and transmission of viruses (e.g., in AIDS and COVID-19). As examples, participation in clinical trials or seeking treatments with low probabilities of success (e.g., with antibiotics or at the end of life) may indicate a defensibly different categorical gist perspective on risk as opposed to simply misunderstanding probabilities or failing to make prescribed tradeoffs. Thus, FTT explains why people avoid precise tradeoffs despite computing them. Facilitating gist representations of information offers an alternative approach that goes beyond providing uninterpreted “neutral” facts versus persuading or shifting the balance between fast versus slow thinking (or emotion vs. cognition). In contrast to either taking mental shortcuts or deliberating about details, gist processing facilitates application of advanced knowledge and deeply held values to choices. Highlights Fuzzy-trace theory (FTT) supports practical approaches to improving health and medicine. FTT differs in important respects from other theories of decision making, which has implications for how to help patients, providers, and health communicators. Gist mental representations emphasize categorical distinctions, reflect understanding in context, and help cue values relevant to health and patient care. Understanding the science behind theory is crucial for evidence-based medicine.  more » « less
Award ID(s):
2029420
NSF-PAR ID:
10377964
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Medical Decision Making
Volume:
42
Issue:
6
ISSN:
0272-989X
Page Range / eLocation ID:
741 to 754
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fuzzy‐trace theory predicts that decisionmakers process numerical information about risk at multiple levels in parallel: the simplest level, nominal (categoricalsomenone) gist, and at more fine‐grained levels, involving relative comparison (ordinallessmoregist) and exact quantities (verbatim representations). However, little is known about how individual differences in these numerical representations relate to judgments and decisions, especially involving health tradeoffs and relative risks. To investigate these differences, we administered measures of categorical and ordinal gist representations of number, objective numeracy, and intelligence in two studies (Ns = 978 and 956). In both studies, categorical and ordinal gist representations of number predicted risk judgments and decisions beyond objective numeracy and intelligence. Participants with higher scores in categorical gist were more likely to choose options to avoid cancer recurrence risks; those who were higher in ordinal gist of numbers were more likely to discriminate relative risk of skin cancer; and those with higher scores in objective numeracy were more likely to choose options that were numerically superior overall in terms of relative risk of skin cancer and of genetic risks of breast cancer (e.g., lower numerical probability of cancer). Results support parallel‐processing models that assume multiple representations of numerical information about risk, which vary in precision, and illustrate how individual differences in numerical representations are relevant to tradeoffs and risk comparisons in health decisions. These representations cannot be reduced to one another and explain psychological variations in risk processing that go beyond low versus high levels of objective numeracy.

     
    more » « less
  2. Uncertainty permeates decisions from the trivial to the profound. Integrating brain and behavioral evidence, we discuss how probabilistic (varied outcomes) and temporal (delayed outcomes) uncertainty differ across age and individuals; how critical tests adjudicate between theories of uncertainty (prospect theory and fuzzy-trace theory); and how these mechanisms might be represented in the brain. The same categorical gist representations of gains and losses account for choices and eye-tracking data in both value-allocation (add money to gambles) and risky-choice tasks, disconfrming prospect theory and confrming predictions of fuzzy-trace theory. The analysis is extended to delay discounting and disambiguated choices, explaining hidden zero effects that similarly turn on categorical distinctions between some gain and no gain, certain gain and uncertain gain, gain and loss, and now and later. Bold activation implicates dorsolateral prefrontal and posterior parietal cortices in gist strategies that are not just one tool in a grab-bag of cognitive options but rather are general strategies that systematically predict behaviors across many different tasks involving probabilistic and temporal uncertainty. High valuation (e.g., ventral striatum; ventromedial prefrontal cortex) and low executive control (e.g., lateral prefrontal cortex) contribute to risky and impatient choices, especially in youth. However, valuation in ventral striatum supports reward-maximizing and gist strategies in adulthood. Indeed, processing becomes less “rational” in the sense of maximizing gains and more noncompensatory (eye movements indicate fewer tradeoffs) as development progresses from adolescence to adulthood, as predicted. Implications for theoretically predicted “public-health paradoxes” are discussed, including gist versus verbatim thinking in drug experimentation and addiction. 
    more » « less
  3. A framework is presented for understanding how misinformation shapes decision-making, which has cognitive representations of gist at its core. I discuss how the framework goes beyond prior work, and how it can be implemented so that valid scientific messages are more likely to be effective, remembered, and shared through social media, while misinformation is resisted. The distinction between mental representations of the rote facts of a message—its verbatim representation—and its gist explains several paradoxes, including the frequent disconnect between knowing facts and, yet, making decisions that seem contrary to those facts. Decision makers can falsely remember the gist as seen or heard even when they remember verbatim facts. Indeed, misinformation can be more compelling than information when it provides an interpretation of reality that makes better sense than the facts. Consequently, for many issues, scientific information and misinformation are in a battle for the gist. A fuzzy-processing preference for simple gist explains expectations for antibiotics, the spread of misinformation about vaccination, and responses to messages about global warming, nuclear proliferation, and natural disasters. The gist, which reflects knowledge and experience, induces emotions and brings to mind social values. However, changing mental representations is not sufficient by itself; gist representations must be connected to values. The policy choice is not simply between constraining behavior or persuasion—there is another option. Science communication needs to shift from an emphasis on disseminating rote facts to achieving insight, retaining its integrity but without shying away from emotions and values.

     
    more » « less
  4. Abstract Expert testimony varies in scientific quality and jurors have a difficult time evaluating evidence quality (McAuliff et al., 2009). In the current study, we apply Fuzzy Trace Theory principles, examining whether visual and gist aids help jurors calibrate to the strength of scientific evidence. Additionally we were interested in the role of jurors’ individual differences in scientific reasoning skills in their understanding of case evidence. Contrary to our preregistered hypotheses, there was no effect of evidence condition or gist aid on evidence understanding. However, individual differences between jurors’ numeracy skills predicted evidence understanding. Summary Poor-quality expert evidence is sometimes admitted into court (Smithburn, 2004). Jurors’ calibration to evidence strength varies widely and is not robustly understood. For instance, previous research has established jurors lack understanding of the role of control groups, confounds, and sample sizes in scientific research (McAuliff, Kovera, & Nunez, 2009; Mill, Gray, & Mandel, 1994). Still others have found that jurors can distinguish weak from strong evidence when the evidence is presented alone, yet not when simultaneously presented with case details (Smith, Bull, & Holliday, 2011). This research highlights the need to present evidence to jurors in a way they can understand. Fuzzy Trace Theory purports that people encode information in exact, verbatim representations and through “gist” representations, which represent summary of meaning (Reyna & Brainerd, 1995). It is possible that the presenting complex scientific evidence to people with verbatim content or appealing to the gist, or bottom-line meaning of the information may influence juror understanding of that evidence. Application of Fuzzy Trace Theory in the medical field has shown that gist representations are beneficial for helping laypeople better understand risk and benefits of medical treatment (Brust-Renck, Reyna, Wilhelms, & Lazar, 2016). Yet, little research has applied Fuzzy Trace Theory to information comprehension and application within the context of a jury (c.f. Reyna et. al., 2015). Additionally, it is likely that jurors’ individual characteristics, such as scientific reasoning abilities and cognitive tendencies, influence their ability to understand and apply complex scientific information (Coutinho, 2006). Methods The purpose of this study was to examine how jurors calibrate to the strength of scientific information, and whether individual difference variables and gist aids inspired by Fuzzy Trace Theory help jurors better understand complicated science of differing quality. We used a 2 (quality of scientific evidence: high vs. low) x 2 (decision aid to improve calibration - gist information vs. no gist information), between-subjects design. All hypotheses were preregistered on the Open Science Framework. Jury-eligible community participants (430 jurors across 90 juries; Mage = 37.58, SD = 16.17, 58% female, 56.93% White). Each jury was randomly assigned to one of the four possible conditions. Participants were asked to individually fill out measures related to their scientific reasoning skills prior to watching a mock jury trial. The trial was about an armed bank robbery and consisted of various pieces of testimony and evidence (e.g. an eyewitness testimony, police lineup identification, and a sweatshirt found with the stolen bank money). The key piece of evidence was mitochondrial DNA (mtDNA) evidence collected from hair on a sweatshirt (materials from Hans et al., 2011). Two experts presented opposing opinions about the scientific evidence related to the mtDNA match estimate for the defendant’s identification. The quality and content of this mtDNA evidence differed based on the two conditions. The high quality evidence condition used a larger database than the low quality evidence to compare to the mtDNA sample and could exclude a larger percentage of people. In the decision aid condition, experts in the gist information group presented gist aid inspired visuals and examples to help explain the proportion of people that could not be excluded as a match. Those in the no gist information group were not given any aid to help them understand the mtDNA evidence presented. After viewing the trial, participants filled out a questionnaire on how well they understood the mtDNA evidence and their overall judgments of the case (e.g. verdict, witness credibility, scientific evidence strength). They filled this questionnaire out again after a 45-minute deliberation. Measures We measured Attitudes Toward Science (ATS) with indices of scientific promise and scientific reservations (Hans et al., 2011; originally developed by National Science Board, 2004; 2006). We used Drummond and Fischhoff’s (2015) Scientific Reasoning Scale (SRS) to measure scientific reasoning skills. Weller et al.’s (2012) Numeracy Scale (WNS) measured proficiency in reasoning with quantitative information. The NFC-Short Form (Cacioppo et al., 1984) measured need for cognition. We developed a 20-item multiple-choice comprehension test for the mtDNA scientific information in the cases (modeled on Hans et al., 2011, and McAuliff et al., 2009). Participants were shown 20 statements related to DNA evidence and asked whether these statements were True or False. The test was then scored out of 20 points. Results For this project, we measured calibration to the scientific evidence in a few different ways. We are building a full model with these various operationalizations to be presented at APLS, but focus only on one of the calibration DVs (i.e., objective understanding of the mtDNA evidence) in the current proposal. We conducted a general linear model with total score on the mtDNA understanding measure as the DV and quality of scientific evidence condition, decision aid condition, and the four individual difference measures (i.e., NFC, ATS, WNS, and SRS) as predictors. Contrary to our main hypotheses, neither evidence quality nor decision aid condition affected juror understanding. However, the individual difference variables did: we found significant main effects for Scientific Reasoning Skills, F(1, 427) = 16.03, p <.001, np2 = .04, Weller Numeracy Scale, F(1, 427) = 15.19, p <.001, np2 = .03, and Need for Cognition, F(1, 427) = 16.80, p <.001, np2 = .04, such that those who scored higher on these measures displayed better understanding of the scientific evidence. In addition there was a significant interaction of evidence quality condition and scores on the Weller’s Numeracy Scale, F(1, 427) = 4.10, p = .04, np2 = .01. Further results will be discussed. Discussion These data suggest jurors are not sensitive to differences in the quality of scientific mtDNA evidence, and also that our attempt at helping sensitize them with Fuzzy Trace Theory-inspired aids did not improve calibration. Individual scientific reasoning abilities and general cognition styles were better predictors of understanding this scientific information. These results suggest a need for further exploration of approaches to help jurors differentiate between high and low quality evidence. Note: The 3rd author was supported by an AP-LS AP Award for her role in this research. Learning Objective: Participants will be able to describe how individual differences in scientific reasoning skills help jurors understand complex scientific evidence. 
    more » « less
  5. Abstract: Jury notetaking can be controversial despite evidence suggesting benefits for recall and understanding. Research on note taking has historically focused on the deliberation process. Yet, little research explores the notes themselves. We developed a 10-item coding guide to explore what jurors take notes on (e.g., simple vs. complex evidence) and how they take notes (e.g., gist vs. specific representation). In general, jurors made gist representations of simple and complex information in their notes. This finding is consistent with Fuzzy Trace Theory (Reyna & Brainerd, 1995) and suggests notes may serve as a general memory aid, rather than verbatim representation. Summary: The practice of jury notetaking in the courtroom is often contested. Some states allow it (e.g., Nebraska: State v. Kipf, 1990), while others forbid it (e.g., Louisiana: La. Code of Crim. Proc., Art. 793). Some argue notes may serve as a memory aid, increase juror confidence during deliberation, and help jurors engage in the trial (Hannaford & Munsterman, 2001; Heuer & Penrod, 1988, 1994). Others argue notetaking may distract jurors from listening to evidence, that juror notes may be given undue weight, and that those who took notes may dictate the deliberation process (Dann, Hans, & Kaye, 2005). While research has evaluated the efficacy of juror notes on evidence comprehension, little work has explored the specific content of juror notes. In a similar project on which we build, Dann, Hans, and Kaye (2005) found jurors took on average 270 words of notes each with 85% including references to jury instructions in their notes. In the present study we use a content analysis approach to examine how jurors take notes about simple and complex evidence. We were particularly interested in how jurors captured gist and specific (verbatim) information in their notes as they have different implications for information recall during deliberation. According to Fuzzy Trace Theory (Reyna & Brainerd, 1995), people extract “gist” or qualitative meaning from information, and also exact, verbatim representations. Although both are important for helping people make well-informed judgments, gist-based understandings are purported to be even more important than verbatim understanding (Reyna, 2008; Reyna & Brainer, 2007). As such, it could be useful to examine how laypeople represent information in their notes during deliberation of evidence. Methods Prior to watching a 45-minute mock bank robbery trial, jurors were given a pen and notepad and instructed they were permitted to take notes. The evidence included testimony from the defendant, witnesses, and expert witnesses from prosecution and defense. Expert testimony described complex mitochondrial DNA (mtDNA) evidence. The present analysis consists of pilot data representing 2,733 lines of notes from 52 randomly-selected jurors across 41 mock juries. Our final sample for presentation at AP-LS will consist of all 391 juror notes in our dataset. Based on previous research exploring jury note taking as well as our specific interest in gist vs. specific encoding of information, we developed a coding guide to quantify juror note-taking behaviors. Four researchers independently coded a subset of notes. Coders achieved acceptable interrater reliability [(Cronbach’s Alpha = .80-.92) on all variables across 20% of cases]. Prior to AP-LS, we will link juror notes with how they discuss scientific and non-scientific evidence during jury deliberation. Coding Note length. Before coding for content, coders counted lines of text. Each notepad line with at minimum one complete word was coded as a line of text. Gist information vs. Specific information. Any line referencing evidence was coded as gist or specific. We coded gist information as information that did not contain any specific details but summarized the meaning of the evidence (e.g., “bad, not many people excluded”). Specific information was coded as such if it contained a verbatim descriptive (e.g.,“<1 of people could be excluded”). We further coded whether this information was related to non-scientific evidence or related to the scientific DNA evidence. Mentions of DNA Evidence vs. Other Evidence. We were specifically interested in whether jurors mentioned the DNA evidence and how they captured complex evidence. When DNA evidence was mention we coded the content of the DNA reference. Mentions of the characteristics of mtDNA vs nDNA, the DNA match process or who could be excluded, heteroplasmy, references to database size, and other references were coded. Reliability. When referencing DNA evidence, we were interested in whether jurors mentioned the evidence reliability. Any specific mention of reliability of DNA evidence was noted (e.g., “MT DNA is not as powerful, more prone to error”). Expert Qualification. Finally, we were interested in whether jurors noted an expert’s qualifications. All references were coded (e.g., “Forensic analyst”). Results On average, jurors took 53 lines of notes (range: 3-137 lines). Most (83%) mentioned jury instructions before moving on to case specific information. The majority of references to evidence were gist references (54%) focusing on non-scientific evidence and scientific expert testimony equally (50%). When jurors encoded information using specific references (46%), they referenced non-scientific evidence and expert testimony equally as well (50%). Thirty-three percent of lines were devoted to expert testimony with every juror including at least one line. References to the DNA evidence were usually focused on who could be excluded from the FBIs database (43%), followed by references to differences between mtDNA vs nDNA (30%), and mentions of the size of the database (11%). Less frequently, references to DNA evidence focused on heteroplasmy (5%). Of those references that did not fit into a coding category (11%), most focused on the DNA extraction process, general information about DNA, and the uniqueness of DNA. We further coded references to DNA reliability (15%) as well as references to specific statistical information (14%). Finally, 40% of jurors made reference to an expert’s qualifications. Conclusion Jury note content analysis can reveal important information about how jurors capture trial information (e.g., gist vs verbatim), what evidence they consider important, and what they consider relevant and irrelevant. In our case, it appeared jurors largely created gist representations of information that focused equally on non-scientific evidence and scientific expert testimony. This finding suggests note taking may serve not only to represent information verbatim, but also and perhaps mostly as a general memory aid summarizing the meaning of evidence. Further, jurors’ references to evidence tended to be equally focused on the non-scientific evidence and the scientifically complex DNA evidence. This observation suggests jurors may attend just as much to non-scientific evidence as they to do complex scientific evidence in cases involving complicated evidence – an observation that might inform future work on understanding how jurors interpret evidence in cases with complex information. Learning objective: Participants will be able to describe emerging evidence about how jurors take notes during trial. 
    more » « less