Are Mixed-Halide Ruddlesden–Popper Perovskites Really Mixed?
- Award ID(s):
- 1952841
- PAR ID:
- 10377990
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Energy Letters
- Volume:
- 7
- Issue:
- 12
- ISSN:
- 2380-8195
- Page Range / eLocation ID:
- p. 4242-4247
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We consider the post-training quantization problem, which discretizes the weights of pre-trained deep neural networks without re-training the model. We propose multipoint quantization, a quantization method that approximates a full-precision weight vector using a linear combination of multiple vectors of low-bit numbers; this is in contrast to typical quantization methods that approximate each weight using a single low precision number. Computationally, we construct the multipoint quantization with an efficient greedy selection procedure, and adaptively decides the number of low precision points on each quantized weight vector based on the error of its output. This allows us to achieve higher precision levels for important weights that greatly influence the outputs, yielding an 'effect of mixed precision' but without physical mixed precision implementations (which requires specialized hardware accelerators). Empirically, our method can be implemented by common operands, bringing almost no memory and computation overhead. We show that our method outperforms a range of state-of-the-art methods on ImageNet classification and it can be generalized to more challenging tasks like PASCAL VOC object detection.more » « less
-
null (Ed.)We approach the problem of implementing mixed-datatype support within the general matrix multiplication ( gemm ) operation of the BLAS-like Library Instantiation Software framework, whereby each matrix operand A , B , and C may be stored as single- or double-precision real or complex values. Another factor of complexity, whereby the matrix product and accumulation are allowed to take place in a precision different from the storage precisions of either A or B , is also discussed. We first break the problem into orthogonal dimensions, considering the mixing of domains separately from mixing precisions. Support for all combinations of matrix operands stored in either the real or complex domain is mapped out by enumerating the cases and describing an implementation approach for each. Supporting all combinations of storage and computation precisions is handled by typecasting the matrices at key stages of the computation—during packing and/or accumulation, as needed. Several optional optimizations are also documented. Performance results gathered on a 56-core Marvell ThunderX2 and a 52-core Intel Xeon Platinum demonstrate that high performance is mostly preserved, with modest slowdowns incurred from unavoidable typecast instructions. The mixed-datatype implementation confirms that combinatorial intractability is avoided, with the framework relying on only two assembly microkernels to implement 128 datatype combinations.more » « less
An official website of the United States government
