Abstract We incorporate Se into the 3D halide perovskite framework using the zwitterionic ligand: SeCYS (+NH3(CH2)2Se−), which occupies both the X−and A+sites in the prototypical ABX3perovskite. The new organoselenide‐halide perovskites: (SeCYS)PbX2(X=Cl, Br) expand upon the recently discovered organosulfide‐halide perovskites. Single‐crystal X‐ray diffraction and pair distribution function analysis reveal the average structures of the organoselenide‐halide perovskites, whereas the local lead coordination environments and their distributions were probed through solid‐state77Se and207Pb NMR, complemented by theoretical simulations. Density functional theory calculations illustrate that the band structures of (SeCYS)PbX2largely resemble those of their S analogs, with similar band dispersion patterns, yet with a considerable band gap decrease. Optical absorbance measurements indeed show band gaps of 2.07 and 1.86 eV for (SeCYS)PbX2with X=Cl and Br, respectively. We further demonstrate routes to alloying the halides (Cl, Br) and chalcogenides (S, Se) continuously tuning the band gap from 1.86 to 2.31 eV–straddling the ideal range for tandem solar cells or visible‐light photocatalysis. The comprehensive description of the average and local structures, and how they can fine‐tune the band gap and potential trap states, respectively, establishes the foundation for understanding this new perovskite family, which combines solid‐state and organo‐main‐group chemistry.
more »
« less
Precise and Accelerated Polymer Synthesis via Mixed-Ligand and Mixed-RAFT Agents
- Award ID(s):
- 1807127
- PAR ID:
- 10232961
- Date Published:
- Journal Name:
- Chem
- Volume:
- 6
- Issue:
- 6
- ISSN:
- 2451-9294
- Page Range / eLocation ID:
- 1203 to 1204
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
An official website of the United States government

