skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: A Method for Granular Traffic Data Imputation Based on PARATUCK2

Imputing missing data is a critical task in data-driven intelligent transportation systems. During recent decades there has been a considerable investment in developing various types of sensors and smart systems, including stationary devices (e.g., loop detectors) and floating vehicles equipped with global positioning system (GPS) trackers to collect large-scale traffic data. However, collected data may not include observations from all road segments in a traffic network for different reasons, including sensor failure, transmission error, and because GPS-equipped vehicles may not always travel through all road segments. The first step toward developing real-time traffic monitoring and disruption prediction models is to estimate missing values through a systematic data imputation process. Many of the existing data imputation methods are based on matrix completion techniques that utilize the inherent spatiotemporal characteristics of traffic data. However, these methods may not fully capture the clustered structure of the data. This paper addresses this issue by developing a novel data imputation method using PARATUCK2 decomposition. The proposed method captures both spatial and temporal information of traffic data and constructs a low-dimensional and clustered representation of traffic patterns. The identified spatiotemporal clusters are used to recover network traffic profiles and estimate missing values. The proposed method is implemented using traffic data in the road network of Manhattan in New York City. The performance of the proposed method is evaluated in comparison with two state-of-the-art benchmark methods. The outcomes indicate that the proposed method outperforms the existing state-of-the-art imputation methods in complex and large-scale traffic networks.

 
more » « less
Award ID(s):
2027024
NSF-PAR ID:
10378126
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
Volume:
2676
Issue:
10
ISSN:
0361-1981
Format(s):
Medium: X Size: p. 220-230
Size(s):
p. 220-230
Sponsoring Org:
National Science Foundation
More Like this
  1. With the trend of vehicles becoming increasingly connected and potentially autonomous, vehicles are being equipped with rich sensing and communication devices. Various vehicular services based on shared real-time sensor data of vehicles from a fleet have been proposed to improve the urban efficiency, e.g., HD-live map, and traffic accident recovery. However, due to the high cost of data uploading (e.g., monthly fees for a cellular network), it would be impractical to make all well-equipped vehicles to upload real-time sensor data constantly. To better utilize these limited uploading resources and achieve an optimal road segment sensing coverage, we present a real-time sensing task scheduling framework, i.e., RISC, for Resource-Constraint modeling for urban sensing by scheduling sensing tasks of commercial vehicles with sensors based on the predictability of vehicles' mobility patterns. In particular, we utilize the commercial vehicles, including taxicabs, buses, and logistics trucks as mobile sensors to sense urban phenomena, e.g., traffic, by using the equipped vehicular sensors, e.g., dash-cam, lidar, automotive radar, etc. We implement RISC on a Chinese city Shenzhen with one-month real-world data from (i) a taxi fleet with 14 thousand vehicles; (ii) a bus fleet with 13 thousand vehicles; (iii) a truck fleet with 4 thousand vehicles. Further, we design an application, i.e., track suspect vehicles (e.g., hit-and-run vehicles), to evaluate the performance of RISC on the urban sensing aspect based on the data from a regular vehicle (i.e., personal car) fleet with 11 thousand vehicles. The evaluation results show that compared to the state-of-the-art solutions, we improved sensing coverage (i.e., the number of road segments covered by sensing vehicles) by 10% on average. 
    more » « less
  2. challenge as it may introduce uncertainties into the data analysis. Recent advances in matrix completion have shown competitive imputation performance when applied to many real-world domains. However, there are two major limitations when applying matrix completion methods to spatial data. First, they make a strong assumption that the entries are missing-at-random, which may not hold for spatial data. Second, they may not effectively utilize the underlying spatial structure of the data. To address these limitations, this paper presents a novel clustered adversarial matrix factorization method to explore and exploit the underlying cluster structure of the spatial data in order to facilitate effective imputation. The proposed method utilizes an adversarial network to learn the joint probability distribution of the variables and improve the imputation performance for the missing entries that are not randomly sampled. 
    more » « less
  3. null (Ed.)
    Abstract The problem of missingness in observational data is ubiquitous. When the confounders are missing at random, multiple imputation is commonly used; however, the method requires congeniality conditions for valid inferences, which may not be satisfied when estimating average causal treatment effects. Alternatively, fractional imputation, proposed by Kim 2011, has been implemented to handling missing values in regression context. In this article, we develop fractional imputation methods for estimating the average treatment effects with confounders missing at random. We show that the fractional imputation estimator of the average treatment effect is asymptotically normal, which permits a consistent variance estimate. Via simulation study, we compare fractional imputation’s accuracy and precision with that of multiple imputation. 
    more » « less
  4. The existence of spatiotemporal correlations in traffic behavior on links in a transportation network is potentially very useful. However, traffic metrics are often strongly correlated simply because of natural variations in travel demand patterns and these temporal trends might obstruct more meaningful relationships caused by the physics of traffic. To overcome this challenge, the present paper proposes a non-parametric, moving average detrending method that can be used to remove these background trends, even during non-stationary periods in which traffic states are changing with time. Cross-correlations performed on the detrended data are then used to identify more meaningful trends. The proposed method can also incorporate temporal lags in correlations between individual links, which accounts for the time it takes for information to travel between them. Links that exhibit strong correlations after detrending can then be grouped into communities which behave together using graph theory methods, and this community structure can be leveraged to improve prediction of link performance when information is missing. The proposed methodology is applied to a case study network using real-time link travel speeds obtained from probe vehicles. The results reveal that the 40 links in the network can be grouped into between eight and 12 communities, depending on the day of the week. This suggests that only a handful of links may need to be monitored to estimate travel speeds across the entire network. Furthermore, the significant overlap in the community structure across these days reveals that the network structure plays a large role in spatiotemporal correlations in link travel speeds in a network. 
    more » « less
  5. Real-time traffic data at intersections is significant for development of adaptive traffic light control systems. Sensors such as infrared radiation and GPS are not capable of providing detailed traffic information. Compared with these sensors, surveillance cameras have the potential to provide real scenes for traffic analysis. In this research, a You Only Look Once (YOLO)-based algorithm is employed to detect and track vehicles from traffic videos, and a predefined road mask is used to determine traffic flow and turning events in different roads. A Kalman filter is used to estimate and predict vehicle speed and location under the condition of background occlusion. The result shows that the proposed algorithm can identify traffic flow and turning events at a root mean square error (RMSE) of 10. The result shows that a Kalman filter with an intersection of union (IOU)-based tracker performs well at the condition of background occlusion. Also, the proposed algorithm can detect and track vehicles at different optical conditions. Bad weather and night-time will influence the detecting and tracking process in areas far from traffic cameras. The traffic flow extracted from traffic videos contains road information, so it can not only help with single intersection control, but also provides information for a road network. The temporal characteristic of observed traffic flow gives the potential to predict traffic flow based on detected traffic flow, which will make the traffic light control more efficient. 
    more » « less