skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Traffic Behavior Recognition from Traffic Videos under Occlusion Condition: A Kalman Filter Approach
Real-time traffic data at intersections is significant for development of adaptive traffic light control systems. Sensors such as infrared radiation and GPS are not capable of providing detailed traffic information. Compared with these sensors, surveillance cameras have the potential to provide real scenes for traffic analysis. In this research, a You Only Look Once (YOLO)-based algorithm is employed to detect and track vehicles from traffic videos, and a predefined road mask is used to determine traffic flow and turning events in different roads. A Kalman filter is used to estimate and predict vehicle speed and location under the condition of background occlusion. The result shows that the proposed algorithm can identify traffic flow and turning events at a root mean square error (RMSE) of 10. The result shows that a Kalman filter with an intersection of union (IOU)-based tracker performs well at the condition of background occlusion. Also, the proposed algorithm can detect and track vehicles at different optical conditions. Bad weather and night-time will influence the detecting and tracking process in areas far from traffic cameras. The traffic flow extracted from traffic videos contains road information, so it can not only help with single intersection control, but also provides information for a road network. The temporal characteristic of observed traffic flow gives the potential to predict traffic flow based on detected traffic flow, which will make the traffic light control more efficient.  more » « less
Award ID(s):
2043060
PAR ID:
10341674
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
ISSN:
0361-1981
Page Range / eLocation ID:
036119812210764
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Already known as densely populated areas with land use including housing, transportation, sanitation, utilities and communication, nowadays, cities tend to grow even bigger. Genuine road-user's types are emerging with further technological developments to come. As cities population size escalates, and roads getting congested, government agencies such as Department of Transportation (DOT) through the National Highway Traffic Safety Administration (NHTSA) are in pressing need to perfect their management systems with new efficient technologies. The challenge is to anticipate on never before seen problems, in their effort to save lives and implement sustainable cost-effective management systems. To make things yet more complicated and a bit daunting, self-driving car will be authorized in a close future in crowded major cities where roads are to be shared among pedestrians, cyclists, cars, and trucks. Roads sizes and traffic signaling will need to be constantly adapted accordingly. Counting and classifying turning vehicles and pedestrians at an intersection is an exhausting task and despite traffic monitoring systems use, human interaction is heavily required for counting. Our approach to resolve traffic intersection turning-vehicles counting is less invasive, requires no road dig up or costly installation. Live or recorded videos from already installed camera all over the cities can be used as well as any camera including cellphones. Our system is based on Neural Network and Deep Learning of object detection along computer vision technology and several methods and algorithms. Our approach will work on still images, recorded-videos, real-time live videos and will detect, classify, track and compute moving object velocity and direction using convolution neural network. Created based upon series of algorithms modeled after the human brain, our system uses NVIDIA Video cards with GPU, CUDA, OPENCV and mathematical vectors systems to perform. 
    more » « less
  2. We analyze the effect of a bicycle lane on traffic speeds. Computer vision techniques are used to detect and classify the speed and trajectory of over 9,000 motor-vehicles at an intersection that was part of a pilot demonstration in which a bicycle lane was temporarily implemented. After controlling for direction, hourly traffic flow, and the behavior of the vehicle (i.e., free-flowing or stopped at a red light), we found that the effect of the delineator-protected bicycle lane (marked with traffic cones and plastic delineators) was associated with a 28 % reduction in average maximum speeds and a 21 % decrease in average speeds for vehicles turning right. For those going straight, a smaller reduction of up to 8 % was observed. Traffic moving perpendicular to the bicycle lane experienced no decrease in speeds. Painted-only bike lanes were also associated with a small speed reduction of 11–15 %, but solely for vehicles turning right. These findings suggest an important secondary benefit of bicycle lanes: by having a traffic calming effect, delineated bicycle lanes may decrease the risk and severity of crashes for pedestrians and other road users. 
    more » « less
  3. This paper explores the challenges in developing an inexpensive on-bicycle sensing system to track vehicles at a traffic intersection. In particular, opposing traffic with vehicles that can travel straight or turn left are considered. The estimated vehicle trajectories can be used for collision prevention between bicycles and left-turning vehicles. A compact solid-state 2-D low-density Lidar is mounted at the front of a bicycle to obtain distance measurements from vehicles. Vehicle tracking can be achieved by clustering based approaches for assigning measurement points to individual vehicles, introducing a correction term for position measurement refinement, and by exploiting data association and interacting multiple model Kalman filtering approaches for multi-target tracking. The tracking performance of the developed system is evaluated by both simulation and experimental results. Two types of scenarios that involve straight driving and left turning vehicles are considered. Experimental results show that the developed system can successfully track cars in these scenarios accurately in spite of the low measurement density of the sensor. 
    more » « less
  4. Effective road traffic assessment and estimation is crucial not only for traffic management applications, but also for long-term trans- portation and, more generally, urban planning. Traditionally, this task has been achieved by using a network of stationary traffic count sensors. These costly and unreliable sensors have been replaced with so-called Probe Vehicle Data (PVD), which relies on sampling individual vehicles in traffic using for example smartphones to assess the overall traffic condition. While PVD provides uniform road network coverage, it does not capture the actual traffic flow. On the other hand, stationary sensors capture the absolute traffic flow only at discrete locations. Furthermore, these sensors are often unreliable; temporary mal- functions create gaps in their time-series of measurements. This work bridges the gap between these two data sources by learning the time-dependent fraction of vehicles captured by GPS-based probe data at discrete stationary sensor locations. We can then account for the gaps of the traffic-loop measurements by using the PVD data to estimate the actual total flow. In this work, we show that the PVD flow capture changes sig- nificantly over time in the Washington DC area. Exploiting this information, we are able to derive tight confidence intervals of the traffic volume for areas with no stationary sensor coverage. 
    more » « less
  5. Camera-based systems are increasingly used for collecting information on intersections and arterials. Unlike loop controllers that can generally be only used for detection and movement of vehicles, cameras can provide rich information about the traffic behavior. Vision-based frameworks for multiple-object detection, object tracking, and near-miss detection have been developed to derive this information. However, much of this work currently addresses processing videos offline. In this article, we propose an integrated two-stream convolutional networks architecture that performs real-time detection, tracking, and near-accident detection of road users in traffic video data. The two-stream model consists of a spatial stream network for object detection and a temporal stream network to leverage motion features for multiple-object tracking. We detect near-accidents by incorporating appearance features and motion features from these two networks. Further, we demonstrate that our approaches can be executed in real-time and at a frame rate that is higher than the video frame rate on a variety of videos collected from fisheye and overhead cameras. 
    more » « less