skip to main content

Title: The Extreme North African Haboob in October 2008: High‐Resolution Simulation of Organized Moist Convection in the Lee of the Atlas, Dust Recirculation and Poleward Transport

This study investigates the mesoscale dynamics involved in the 8–11 October 2008 unseasonably strong African dust episode, during which dust was transported to the Iberian Peninsula (IP). We employ observational datasets and a high‐resolution Weather Research and Forecasting model coupled with Chemistry simulations. The analysis shows that during 0900–1200 UTC 9 October, a mesoscale convective system developed over the Atlas Mountains and resulted in a southwestward propagating convective cold pool outflow on the southern foothills of the Anti‐Atlas, which lifted dust from the source region. Between 1200 and 1800 UTC 9 October, new moist convection was enhanced over the Atlas Mountains due to intensifying confluence among a heat low, moist southwesterly Atlantic sea‐breeze front, and northeasterly flow associated with the convective cold pool near western Algeria. This new moist convection intensified the strength of the convective cold pool outflow and haboob, both of which continued propagating southwestward. At 1200 UTC 10 October, the low‐pressure system migrated poleward on the southern slopes of the Anti‐Atlas Mountains in association with a mountain‐plains solenoidal circulation due to the daytime differential heating between the southern slopes of the Anti‐Atlas and nearby atmosphere. The deepening low‐pressure and strengthening Atlantic sea‐breeze redirected an equatorward advancing dust plume into the poleward direction. The dust plume ultimately crossed the Saharan Atlas Mountains on 11 October and finally impacted the IP.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This case study analyzes a nocturnal mesoscale convective system (MCS) that was observed on 25–26 June 2015 in northeastern Kansas during the Plains Elevated Convection At Night (PECAN) project. Over the course of the observational period, a broken line of elevated nocturnal convective cells initiated around 0230 UTC on the cool side of a stationary front and subsequently merged to form a quasi-linear MCS that later developed strong, surface-based outflow and a trailing stratiform region. This study combines radar observations with mobile and fixed mesonet and sounding data taken during PECAN to analyze the kinematics and thermodynamics of the MCS from 0300 to 0630 UTC. This study is unique in that 38 consecutive multi-Doppler wind analyses are examined over the 3.5 h observation period, facilitating a long-duration analysis of the kinematic evolution of the nocturnal MCS. Radar analyses reveal that the initial convective cells and linear MCS are elevated and sustained by an elevated residual layer formed via weak ascent over the stationary front. During upscale growth, individual convective cells develop storm-scale cold pools due to pockets of descending rear-to-front flow that are measured by mobile mesonets. By 0500 UTC, kinematic analysis and mesonet observations show that the MCS has a surface-based cold pool and that convective line updrafts are ingesting parcels from below the stable layer. In this environment, the elevated system has become surface based since the cold pool lifting is sufficient for surface-based parcels to overcome the CIN associated with the frontal stable layer.

    more » « less
  2. Abstract

    This study aims to determine the impacts of tropical island processes on local convective storms. An analysis of rain events on the island of Puerto Rico between 1 June 2015 and 31 July 2016 showed that local island‐enhanced western storms accounted for 89 of 322 storms. This period is of particular importance for the Caribbean as 2015 was one of the driest years on record. While large‐scale influences such as the El Niño–Southern Oscillation, the North Atlantic Oscillation, African easterly waves, and Saharan dust transport modulate moisture conditions in the region, correlations between precipitation and El Niño–Southern Oscillation (−0.14), North Atlantic Oscillation (−0.42), and Saharan dust (0.1) for 1980–2016 ranged from weak to moderate. Local data for the island of Puerto Rico from weather stations, the Convection, Aerosol, and Synoptic‐Effects in the Tropics field campaign, and the North American Mesoscale model support the initiation or enhancement of convective rain events due to local island processes. In particular, analysis of surface wind speed/direction, convective available potential energy, lifted index, and the bulk Richardson number substantiate local instability due to surface heating, orographic uplift, and sea breeze trade‐wind convergence. These convective forcings along with available precipitable water in excess of 50 mm ultimately led to intense storms despite severe rainfall‐mitigating dust episodes for which aerosol optical thickness exceeded 0.4. These results may have major implications for considering the impacts of local air‐sea‐land interactions on rainfall over other tropical islands.

    more » « less
  3. Abstract During the early morning hours of 5 November 2018, a mature mesoscale convective system (MCS) propagated discretely over the second-most populous province of Argentina, Córdoba Province, during the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations–Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO–CACTI) joint field campaigns. Storm behavior was modified by the Sierras de Córdoba, a north–south-oriented regional mountain chain located in the western side of the province. Here, we present observational evidence of the discrete propagation event and the impact of the mountains on the associated physical processes. As the mature MCS moved northeastward and approached the windward side of the mountains, isolated convective cells developed downstream in the mountain lee, 20–50 km ahead of the main convective line. Cells were initiated by an undular bore, which formed as the MCS cold pool moved over the mountain ridge and perturbed the leeside nocturnal, low-level stable layer. The field of isolated cells organized into a new MCS, which continued to move northeastward, while the parent storm decayed as it traversed the mountains. Only the southern portion of the storm propagated discretely, due to variability in mountain height along the chain. In the north, taller mountain peaks prevented the MCS cold pool from moving over the terrain and perturbing the stable layer. Consequently, no bore was generated, and no discrete propagation occurred in this region. To the south, the MCS cold pool was able to traverse the lower-relief mountains, and the discrete propagation was successful. 
    more » « less
  4. Hurricane Matthew locally generated more than 400 mm of rainfall on 8–9 October 2016 over the eastern Carolinas and Virginia as it transitioned into an extratropical cyclone. The heaviest precipitation occurred along a swath situated up to 100–200 km inland from the coast and collocated with enhanced low-tropospheric frontogenesis. Analyses from version 3 of the Rapid Refresh (RAPv3) model indicate that rapid frontogenesis occurred over eastern North and South Carolina and Virginia on 8 October, largely over a 12-h time period between 1200 UTC 8 October and 0000 UTC 9 October. The heaviest rainfall in Matthew occurred when and where spiral rainbands intersected the near-surface front, which promoted the lift of conditionally unstable, moist air. Parallel to the spiral rainbands, conditionally unstable low-tropospheric warm, moist oceanic air was advected inland, and the instability was apparently released as the warm air mass rose over the front. Precipitation in the spiral rainbands intensified on 9 October as the temperature gradient along the near-surface front rapidly increased. Unlike in Hurricane Floyd over the mid-Atlantic states, rainfall totals within the spiral rainbands of Matthew as they approached the near-surface front evidently were not enhanced by release of conditional symmetric instability. However, conditional symmetric instability release in the midtroposphere may have enhanced rainfall 200 km northwest of the near-surface front. Finally, although weak cold-air damming occurred prior to heavy rainfall, damming dissipated prior to frontogenesis and did not impact rainfall totals.

    more » « less
  5. Convective parameterization is the long-lasting bottleneck of global climate modelling and one of the most difficult problems in atmospheric sciences. Uncertainty in convective parameterization is the leading cause of the widespread climate sensitivity in IPCC global warming projections. This paper reviews the observations and parameterizations of atmospheric convection with emphasis on the cloud structure, bulk effects, and closure assumption. The representative state-of-the-art convection schemes are presented, including the ECMWF convection scheme, the Grell scheme used in NCEP model and WRF model, the Zhang-MacFarlane scheme used in NCAR and DOE models, and parameterizations of shallow moist convection. The observed convection has self-suppression mechanisms caused by entrainment in convective updrafts, surface cold pool generated by unsaturated convective downdrafts, and warm and dry lower troposphere created by mesoscale downdrafts. The post-convection environment is often characterized by “diamond sounding” suggesting an over-stabilization rather than barely returning to neutral state. Then the pre-convection environment is characterized by slow moistening of lower troposphere triggered by surface moisture convergence and other mechanisms. The over-stabilization and slow moistening make the convection events episodic and decouple the middle/upper troposphere from the boundary layer, making the state-type quasi-equilibrium hypothesis invalid. Right now, unsaturated convective downdrafts and especially mesoscale downdrafts are missing in most convection schemes, while some schemes are using undiluted convective updrafts, all of which favour easily turned-on convection linked to double-ITCZ (inter-tropical convergence zone), overly weak MJO (Madden-Julian Oscillation) and precocious diurnal precipitation maximum. We propose a new strategy for convection scheme development using reanalysis-driven model experiments such as the assimilation runs in weather prediction centres and the decadal prediction runs in climate modelling centres, aided by satellite simulators evaluating key characteristics such as the lifecycle of convective cloud-top distribution and stratiform precipitation fraction. 
    more » « less