skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Negativity spectra in random tensor networks and holography
A bstract Negativity is a measure of entanglement that can be used both in pure and mixed states. The negativity spectrum is the spectrum of eigenvalues of the partially transposed density matrix, and characterizes the degree and “phase” of entanglement. For pure states, it is simply determined by the entanglement spectrum. We use a diagrammatic method complemented by a modification of the Ford-Fulkerson algorithm to find the negativity spectrum in general random tensor networks with large bond dimensions. In holography, these describe the entanglement of fixed-area states. It was found that many fixed-area states have a negativity spectrum given by a semi-circle. More generally, we find new negativity spectra that appear in random tensor networks, as well as in phase transitions in holographic states, wormholes, and holographic states with bulk matter. The smallest random tensor network is the same as a micro-canonical version of Jackiw-Teitelboim (JT) gravity decorated with end-of-the-world branes. We consider the semi-classical negativity of Hawking radiation and find that contributions from islands should be included. We verify this in the JT gravity model, showing the Euclidean wormhole origin of these contributions.  more » « less
Award ID(s):
2001181
PAR ID:
10378181
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. In this paper, we discuss the properties of the associated entanglement negativity and its Rényi generalizations in holographic duality. We first review the definition of the Rényi negativities, which contain the familiar logarithmic negativity as a special case. We then study these quantities in the random tensor network model and rigorously derive their large bond dimension asymptotics. Finally, we study entanglement negativity in holographic theories with a gravity dual, where we find that Rényi negativities are often dominated by bulk solutions that break the replica symmetry. From these replica symmetry breaking solutions, we derive general expressions for Rényi negativities and their special limits including the logarithmic negativity. In fixed-area states, these general expressions simplify dramatically and agree precisely with our results in the random tensor network model. This provides a concrete setting for further studying the implications of replica symmetry breaking in holography. 
    more » « less
  2. Conventional holographic tensor networks can be described as toy holographic maps constructed from many small linear maps acting in a spatially local way, all connected together with “background entanglement”, i.e. links of a fixed state, often the maximally entangled state. However, these constructions fall short of modeling real holographic maps. One reason is that their “areas” are trivial, taking the same value for all states, unlike in gravity where the geometry is dynamical. Recently, new constructions have ameliorated this issue by adding degrees of freedom that “live on the links”. This makes areas non-trivial, equal to the background entanglement piece plus a new positive piece that depends on the state of the link degrees of freedom. Nevertheless, this still has the downside that there is background entanglement, and hence it only models relatively limited code subspaces in which every area has a definite minimum value. In this note, we simply point out that a version of these constructions goes one step further: they can be background independent, with no background entanglement in the holographic map. This is advantageous because it allows tensor networks to model holographic maps for larger code subspaces. In addition to pointing this out, we address some subtleties involved in making it work. 
    more » « less
  3. A<sc>bstract</sc> The entanglement negativity$$ \mathcal{E} $$ E (A:B) is a useful measure of quantum entanglement in bipartite mixed states. In random tensor networks (RTNs), which are related to fixed-area states, it was found in ref. [1] that the dominant saddles computing the even Rényi negativity$$ {\mathcal{E}}^{(2k)} $$ E 2 k generically break theℤ2kreplica symmetry. This calls into question previous calculations of holographic negativity using 2D CFT techniques that assumedℤ2kreplica symmetry and proposed that the negativity was related to the entanglement wedge cross section. In this paper, we resolve this issue by showing that in general holographic states, the saddles computing$$ {\mathcal{E}}^{(2k)} $$ E 2 k indeed break theℤ2kreplica symmetry. Our argument involves an identity relating$$ {\mathcal{E}}^{(2k)} $$ E 2 k to thek-th Rényi entropy on subregionABin the doubled state$$ {\left.|{\rho}_{AB}\right\rangle}_{A{A}^{\ast }{BB}^{\ast }} $$ ρ AB A A BB , from which we see that theℤ2kreplica symmetry is broken down toℤk. Fork< 1, which includes the case of$$ \mathcal{E} $$ E (A:B) atk= 1/2, we use a modified cosmic brane proposal to derive a new holographic prescription for$$ {\mathcal{E}}^{(2k)} $$ E 2 k and show that it is given by a new saddle with multiple cosmic branes anchored to subregionsAandBin the original state. Using our prescription, we reproduce known results for the PSSY model and show that our saddle dominates over previously proposed CFT calculations neark= 1. Moreover, we argue that theℤ2ksymmetric configurations previously proposed are not gravitational saddles, unlike our proposal. Finally, we contrast holographic calculations with those arising from RTNs with non-maximally entangled links, demonstrating that the qualitative form of backreaction in such RTNs is different from that in gravity. 
    more » « less
  4. Holographic tensor networks model AdS/CFT, but so far they have been limited by involving only systems that are very different from gravity. Unfortunately, we cannot straightforwardly discretize gravity to incorporate it, because that would break diffeomorphism invariance. In this note, we explore a resolution. In low dimensions gravity can be written as a topological gauge theory, which can be discretized without breaking gauge-invariance. However, new problems arise. Foremost, we now need a qualitatively new kind of “area operator,” which has no relation to the number of links along the cut and is instead topological. Secondly, the inclusion of matter becomes trickier. We successfully construct a tensor network both including matter and with this new type of area. Notably, while this area is still related to the entanglement in “edge mode” degrees of freedom, the edge modes are no longer bipartite entangled pairs. Instead they are highly multipartite. Along the way, we calculate the entropy of novel subalgebras in a particular topological gauge theory. We also show that the multipartite nature of the edge modes gives rise to non-commuting area operators, a property that other tensor networks do not exhibit. 
    more » « less
  5. A bstract Holevo information is an upper bound for the accessible classical information of an ensemble of quantum states. In this work, we use Holevo information to investigate the ensemble theory interpretation of quantum gravity. We study the Holevo information in random tensor network states, where the random parameters are the random tensors at each vertex. Based on the results in random tensor network models, we propose a conjecture on the holographic bulk formula of the Holevo information in the gravity case. As concrete examples of holographic systems, we compute the Holevo information in the ensemble of thermal states and thermo-field double states in the Sachdev-Ye-Kitaev model. The results are consistent with our conjecture. 
    more » « less