skip to main content


Title: Abstraction: An alternative neurocognitive account of recognition, prediction, and decision making
Abstract Gilead et al. offer a thoughtful and much-needed treatment of abstraction. However, it fails to build on an extensive literature on abstraction , representational diversity , neurocognition , and psychopathology that provides important constraints and alternative evidence-based conceptions. We draw on conceptions in software engineering, socio-technical systems engineering, and a neurocognitive theory with abstract representations of gist at its core, fuzzy-trace theory.  more » « less
Award ID(s):
2029420
NSF-PAR ID:
10378286
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Behavioral and Brain Sciences
Volume:
43
ISSN:
0140-525X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Stakeholders of engineering education have recognized the need for engineering instruction in K‐12 classrooms, especially at the high school level. However, lack of engineering-specific standards and varied conceptions of engineering teaching create challenges for high school teachers to teach engineering courses. This paper explores high school teachers’ conceptions of engineering teaching in the context of an engineering education professional development (PD) workshop. We use Social Cognitive Career Theory (SCCT) to examine participants’ conceptions during two focus groups conducted as part of the PD; particularly focusing on teachers’ goals, interests, challenges, and expected outcomes of teaching a high school level engineering course. Results highlight the need for social support for teachers to sustain engineering teaching. 
    more » « less
  2. The purpose of this research study is to understand teacher experiences throughout their second year of engagement in the Virginia Tech Partnering with Educators and Engineers in Rural Schools partnership. This partnership is an assets-based community partnership in a rural environment between middle school teachers, regional industry, and university affiliates that is focused on implementing recurrent, hands-on, culturally relevant engineering activities for middle school students. This qualitative study uses constant comparative methodology informed by grounded theory on teacher interviews to capture both teacher experiences in the partnership as well as teacher-identified assets in their classrooms and school communities. Using the sensitizing concepts of pedagogical content knowledge, self-efficacy, and the Interconnected Model of Teacher Growth, this study found that while teachers experienced the program differently depending on their contextual setting of their schools, all teachers expressed shifts in their recognition of and value placed on community assets. Findings also suggest that teachers greatly value involving industry and university partners in the classroom to highlight the applications of engineering in their communities and support a reimagination of engineering conceptions and careers for both students and teachers. Teachers reported that the hands-on, team-based, culturally relevant engineering activities engaged learners and showcased individual strengths in ways they otherwise do not see exhibited in their traditional curriculum. The partnership ultimately allowed teachers to identify how assets in schools’ rural communities, beyond those previously identified within their schools, could aid them in further developing and implementing engineering activities. With teachers serving as role models for students, it is important to support teachers’ reimagination of engineering conceptions and integration into the classroom to ultimately increase students’ engineering engagement. Our findings highlight the value of community-based approaches in supporting engineering integration in the classroom and describe the assets that teachers note as being the most significant in their community. 
    more » « less
  3. Abstract

    Integrated approaches to teaching science, technology, engineering, and mathematics (STEM) are increasingly being implemented in elementary and middle school classrooms, and despite a variety of conceptions of integrated STEM, researchers agree that small group activities and teamwork play a central role in STEM learning. However, little is known about how students participate in the small group portions of integrated STEM curricular units. In this study, a microvideo ethnography framed within activity theory was used to examine small group interactions among sixth‐grade students completing integrated STEM activities related to the properties of light. Students working in three different small groups (all‐girl, all‐boy, and mixed‐gender) were included in the analysis. Findings highlight differences in the activity systems across activity type (science vs. engineering) and across small groups, with students focusing on different objectives for completing STEM activities, utilizing different tools as they sought to reach their objectives, and dividing labor differently. Findings from this study suggest that these students, and girls in particular, were less prepared to navigate open‐ended engineering activities than highly structured science activities. Theoretical and practical implications for curriculum development and pedagogical strategies are discussed.

     
    more » « less
  4. Barriers to broadening participation in engineering to rural and Appalachian youth include misalignment with family and community values, lack of opportunities, and community misperceptions of engineering. While single interventions are unlikely to stimulate change in these areas, more sustainable interventions that are co-designed with local relevance appear promising. Through our NSF ITEST project, we test the waters of this intervention model through partnership with school systems and engineering industry to implement a series of engineering-themed, standards-aligned lessons for the middle school science classroom. Our mixed methods approach includes collection of interview and survey data from administrators, teachers, engineers, and university affiliates as well as observation and student data from the classroom. We have utilized theory from learning science and organizational collaboration to structure and inform our analysis and explore the impact of our project. The research is guided by the following questions: RQ 1: How do participants conceptualize engineering careers? How and why do such perceptions shift throughout the project? RQ 2: What elements of the targeted intervention affect student motivation towards engineering careers specifically with regard to developing competencies and ability beliefs regarding engineering? RQ 3: How can strategic collaboration between K12 and industry promote a shift in teacher’s conceptions of engineers and increased self-efficacy in building and delivering engineering curriculum? RQ 4: How do stakeholder characteristics, perceptions, and dynamics affect the likelihood of sustainability in strategic collaborations between K12 and industry stakeholders? How do prevailing institutional and collaborative conditions mediate sustainability? In year one, we involved nine 6th grade teachers, three engineering companies, and over 500 students. In year two, we expanded to include 7th grade teachers in our partner schools and the new students moving up to 6th grade. Lessons aligned with students' everyday experiences and connected to industry. For example, students created bouncy balls and tested their effectiveness on materials produced from partner manufacturing facilities. From preliminary analysis of data collected in the first two years of the project (e.g, the Draw an Engineer Test and teacher interviews), we have begun to see evidence of positive student and teacher impact. Additionally, our application of collaborative theory to the investigation of stakeholder perceptions of the project has revealed implications for partnering with school systems and engineering industry. For example, key individuals at each organization may serve as important conduits for program communication and collaborative work. 
    more » « less
  5. At the graduate level, most milestones are based on the ability to write for an academic audience, whether that be for dissertation proposals, publications, or funding opportunities. Writing scholars often discuss the process by which graduate students learn to join their academic “discourse communities” through academic literacies theory. Graduate attrition researchers relate the feeling of belonging with persistence in doctoral programs; however, there has not to date been any research that directly studies engineering writing attitudes and perceptions with student career trajectories, persistence, or attrition. To meet this need, this paper presents research from a larger study analyzing graduate level engineering writing and attrition. The explicit objective of this paper is to present quantitative data relating current graduate engineering students' attitudes, processes, and concepts of academic writing with the certainty of their career trajectory. Five scales measuring aspects of writing were deployed to engineering programs at ten research intensive universities across the United States, with a final total of n=621 graduate student respondents that represent early-career, mid-career, and late-career stages of the graduate timeline. Results indicate that graduate student processes and conceptions of engineering writing correlate with the likelihood of pursuing careers in various engineering sectors after completing their graduate degree programs. 
    more » « less