Contribution: This single case study represents a unique attempt to examine a music teacher's experiences as he took on the challenge of teaching a high school level engineering course. The study contributes to the growing body of research and conversations around science, technology, engineering, and mathematics (STEM) versus non-STEM beliefs, perceptions, and practices in precollege education. This work informs future teacher professional development (PD) and hiring efforts to broaden the pool of teachers capable of teaching precollege engineering classes. Background: Engineering education is growing in precollege settings but recruiting willing and qualified teachers has been a continuous challenge. Teacher PD programs should consider a broader and inclusive approach that builds confidence and empowers teachers from all disciplinary backgrounds (STEM and non-STEM) to teach precollege engineering classes. Such opportunities are not always made available to non-STEM teachers. Research Questions: 1) How does a high school music teacher with a non-STEM background experience teaching an introductory engineering course? 2) What are the necessary preconditions that could help bridge non-STEM content areas to engineering, specifically for teacher PD efforts?
more »
« less
High school teachers' conceptualizations of engineering teaching
Stakeholders of engineering education have recognized the need for engineering instruction in K‐12 classrooms, especially at the high school level. However, lack of engineering-specific standards and varied conceptions of engineering teaching create challenges for high school teachers to teach engineering courses. This paper explores high school teachers’ conceptions of engineering teaching in the context of an engineering education professional development (PD) workshop. We use Social Cognitive Career Theory (SCCT) to examine participants’ conceptions during two focus groups conducted as part of the PD; particularly focusing on teachers’ goals, interests, challenges, and expected outcomes of teaching a high school level engineering course. Results highlight the need for social support for teachers to sustain engineering teaching.
more »
« less
- Award ID(s):
- 1849430
- PAR ID:
- 10294442
- Date Published:
- Journal Name:
- the Annual Meeting of the American Educational Research Association (AERA)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background: Researcher-practitioner partnerships (RPPs) have gained increasing prominence within education, since they are crucial for identifying partners’ problems of practice and seeking solutions for improving district (or school) problems. The CS Pathways RPP project brought together researchers and practitioners, including middle school teachers and administrators from three urban school districts, to build teachers’ capacity to implement an inclusive computer science and digital literacy (CSDL) curriculum for all students in their middle schools. Objective: This study explored the teachers’ self-efficacy development in teaching a middle school CSDL curriculum under the project’s RPP framework. The ultimate goal was to gain insights into how the project’s RPP framework and its professional development (PD) program supported teachers’ self-efficacy development, in particular its challenges and success of the partnership. Method: Teacher participants attended the first-year PD program and were surveyed and/or interviewed about their self-efficacy in teaching CSDL curriculum, spanning topics ranging from digital literacy skills to app creation ability and curriculum implementation. Both survey and interview data were collected and analyzed using mixed methods 1) to examine the reach of the RPP PD program in terms of teachers’ self-efficacy; 2) to produce insightful understandings of the PD program impact on the project’s goal of building teachers’ self-efficacy. Results and Discussion: We reported the teachers’ self-efficacy profiles based on the survey data. A post-survey indicated that a majority of the teachers have high self-efficacy in teaching the CSDL curriculum addressed by the RPP PD program. Our analysis identified five critical benefits the project’s RPP PD program provided, namely collaborative efforts on resource and infrastructure building, content and pedagogical knowledge growth, collaboration and communication, and building teacher identity. All five features have shown direct impacts on teachers' self-efficacy. The study also reported teachers’ perceptions on the challenges they faced and potential areas for improvements. These findings indicate some important features of an effective PD program, informing the primary design of an RPP CS PD program.more » « less
-
Teachers’ integration of the Next Generation Science Standards and corresponding Science and Engineering Practices (SEPs) illustrate current science education reform in the United States. Effective teacher professional development (PD) on SEPs is essential for reform success. In this study, we evaluated the Nebraska STEM Education Conference, a PD program for middle school, high school, and first- and second-year post-secondary STEM teachers. This SEP-oriented PD program focused predominantly on the SEPs ‘developing and using models’ and ‘using mathematics and computational thinking.’ An electronic survey was used to measure participants’ (n = 45) prior integration of SEPs, influential factors and barriers to using SEPs, and changes to interest and confidence in using SEPs as a result of attending the PD program. Our results showed that teachers had limited prior use of SEPs in their teaching. Student interest and learning outcomes were the factors found to be most influential to teachers’ use of SEPs, while limited knowledge, confidence, and resources were the most commonly identified barriers. As a result of attending the PD program, participants significantly improved their confidence and interest to incorporate SEPs. We recommend continued SEP-oriented PD to foster successful NGSS integration and to advance reforms in science education.more » « less
-
null (Ed.)As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts.more » « less
-
As the importance to integrate engineering into K12 curricula grows so does the need to develop teachers’ engineering teaching capabilities and knowledge. One method that has been used to aid this development is engineering professional development programs. This evaluation paper presents the successes and challenges of an engineering professional development program for teachers focused around the use of engineering problem-framing design activities in high school science classrooms. These activities were designed to incorporate the cross-cutting ideas published in the Next Generation Science Standards (NGSS) and draw on best practices for instructional design of problem-framing activities from research on design and model-eliciting activities (MEAs). The professional development (PD) was designed to include the following researched-based effective PD key elements: (1) is content focused, (2) incorporates active learning, (3) supports collaboration, (4) uses models of effective practice, (5) provides coaching and expert support, (6) offers feedback and reflection, and (7) is of sustained duration. The engineering PD, including in-classroom deployment of activities and data collection, was designed as an iterative process to be conducted over a three-year period. This will allow for improvement and refinement of our approach. The first iteration, reported in this paper, consisted of seven high school science teachers who have agreed to participate in the PD, implement the problem-framing activities, and collect student data over a period of one year. The PD itself consisted of the teachers comparing science and engineering, participating in problem-framing training and activities, and developing a design challenge scenario for their own courses. The participating teachers completed a survey at the end of the PD that will be used to inform enhancement of the PD and our efforts to recruit additional participants in the following year. The qualitative survey consisted of open-ended questions asking for the most valuable takeaways from the PD, their reasoning for joining the PD, reasons they would or would not recommend the PD, and, in their opinion, what would inspire their colleagues to attend the PD. The responses to the survey along with observations from the team presenting the PD were analyzed to identify lessons learned and future steps for the following iteration of the PD. From the data, three themes emerged: Development of PD, Teacher Motivation, and Teacher Experience.more » « less
An official website of the United States government

