skip to main content

Title: The luminous type IIn supernova SN 2017hcc: Infrared bright, X-ray, and radio faint
ABSTRACT

We present multiwavelength observations of supernova (SN) 2017hcc with the Chandra X-ray telescope and the X-ray telescope onboard Swift (Swift-XRT) in X-ray bands, with the Spitzer and the TripleSpec spectrometer in near-infrared (IR) and mid-IR bands and with the Karl G. Jansky Very Large Array (VLA) for radio bands. The X-ray observations cover a period of 29 to 1310 d, with the first X-ray detection on day 727 with the Chandra. The SN was subsequently detected in the VLA radio bands from day 1000 onwards. While the radio data are sparse, synchrotron-self absorption is clearly ruled out as the radio absorption mechanism. The near- and the mid-IR observations showed that late time IR emission dominates the spectral energy distribution. The early properties of SN 2017hcc are consistent with shock breakout into a dense mass-loss region, with $\dot{M} \sim 0.1$ M⊙ yr−1 for a decade. At few 100 d, the mass-loss rate declined to ∼0.02 M⊙ yr−1, as determined from the dominant IR luminosity. In addition, radio data also allowed us to calculate a mass-loss rate at around day 1000, which is two orders of magnitude smaller than the mass-loss rate estimates around the bolometric peak. These values indicate that the SN progenitor underwent an more » enhanced mass-loss event a decade before the explosion. The high ratio of IR to X-ray luminosity is not expected in simple models and is possible evidence for an asymmetric circumstellar region.

« less
Authors:
; ; ;
Publication Date:
NSF-PAR ID:
10378295
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
3
Page Range or eLocation-ID:
p. 4151-4161
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 10 37 and ≲ 5.4 × 10 37 erg s −1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the pre-explosion mass-loss rate of the progenitor system to be M ̇ < 7.2 × 10 −9 and < 9.7 × 10 −9 M ⊙ yr −1 for each (at a wind velocity v w = 100 km s −1 and a radius of R ≈ 10 16 cm), assuming any X-ray emission would originate from inverse Compton emission from optical photons upscattered by the supernova shock. If the supernova environment was a constant-density medium, we would find a number density limit of n CSM < 36 and < 65 cm −3 , respectively. These X-ray limits rule out all plausible symbiotic progenitor systems, as well as large swathes of parameter space associated with the single degenerate scenario, such as mass loss at the outer Lagrange point and accretion winds. We also present late-time optical spectroscopy of SN 2020nlb, and set strong limitsmore »on any swept up hydrogen ( L H α < 2.7 × 10 37 erg s −1 ) and helium ( L He, λ 6678 < 2.7 × 10 37 erg s −1 ) from a nondegenerate companion, corresponding to M H ≲ 0.7–2 × 10 −3 M ⊙ and M He ≲ 4 × 10 −3 M ⊙ . Radio observations of SN 2020nlb at 14.6 days after explosion also yield a non-detection, ruling out most plausible symbiotic progenitor systems. While we have doubled the sample of normal Type Ia supernovae with deep X-ray limits, more observations are needed to sample the full range of luminosities and subtypes of these explosions, and set statistical constraints on their circumbinary environments.« less
  2. Abstract We present panchromatic observations and modeling of calcium-strong supernovae (SNe) 2021gno in the star-forming host-galaxy NGC 4165 and 2021inl in the outskirts of elliptical galaxy NGC 4923, both monitored through the Young Supernova Experiment transient survey. The light curves of both, SNe show two peaks, the former peak being derived from shock cooling emission (SCE) and/or shock interaction with circumstellar material (CSM). The primary peak in SN 2021gno is coincident with luminous, rapidly decaying X-ray emission ( L x = 5 × 10 41 erg s −1 ) detected by Swift-XRT at δ t = 1 day after explosion, this observation being the second-ever detection of X-rays from a calcium-strong transient. We interpret the X-ray emission in the context of shock interaction with CSM that extends to r < 3 × 10 14 cm. Based on X-ray modeling, we calculate a CSM mass M CSM = (0.3−1.6) × 10 −3 M ⊙ and density n = (1−4) × 10 10 cm −3 . Radio nondetections indicate a low-density environment at larger radii ( r > 10 16 cm) and mass-loss rate of M ̇ < 10 − 4 M ⊙ yr −1 . SCE modeling of both primary light-curvemore »peaks indicates an extended-progenitor envelope mass M e = 0.02−0.05 M ⊙ and radius R e = 30−230 R ⊙ . The explosion properties suggest progenitor systems containing either a low-mass massive star or a white dwarf (WD), the former being unlikely given the lack of local star formation. Furthermore, the environments of both SNe are consistent with low-mass hybrid He/C/O WD + C/O WD mergers.« less
  3. ABSTRACT We present X-ray and radio observations of what may be the closest Type Iax supernova (SN) to date, SN 2014dt (d = 12.3–19.3 Mpc), and provide tight constraints on the radio and X-ray emission. We infer a specific radio luminosity $L_R\lt (1.0\!-\!2.4)\times 10^{25}\, \rm {erg\, s^{-1}\, Hz^{-1}}$ at a frequency of 7.5 GHz and a X-ray luminosity $L_X\lt 1.4\times 10^{38}\, \rm {erg\, s^{-1}}$ (0.3–10 keV) at ∼38–48 d post-explosion. We interpret these limits in the context of Inverse Compton (IC) emission and synchrotron emission from a population of electrons accelerated at the forward shock of the explosion in a power-law distribution $N_e(\gamma _e)\propto \gamma _e^{-p}$ with p = 3. Our analysis constrains the progenitor system mass-loss rate to be $\dot{M}\lt 5.0 \times 10^{-6} \rm {M_{\odot }\, yr^{-1}}$ at distances $r\lesssim 10^{16}\, \rm {cm}$ for an assumed wind velocity $v_w=100\, \rm {km\, s^{-1}}$, and a fraction of post-shock energy into magnetic fields and relativistic electrons of ϵB = 0.01 and ϵe = 0.1, respectively. This result rules out some of the parameter space of symbiotic giant star companions, and it is consistent with the low mass-loss rates expected from He-star companions. Our calculations also show that the improved sensitivity of the next-generation Very Largemore »Array (ngVLA) is needed to probe the very low-density media characteristic of He stars that are the leading model for binary stellar companions of white dwarfs giving origin to Type Iax SNe.« less
  4. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent withmore »the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

    « less
  5. Abstract

    We present extensive multifrequency Karl G. Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the radio-bright supernova (SN) IIb SN 2004C that span ∼40–2793 days post-explosion. We interpret the temporal evolution of the radio spectral energy distribution in the context of synchrotron self-absorbed emission from the explosion’s forward shock as it expands in the circumstellar medium (CSM) previously sculpted by the mass-loss history of the stellar progenitor. VLBA observations and modeling of the VLA data point to a blastwave with average velocity ∼0.06cthat carries an energy of ≈1049erg. Our modeling further reveals a flat CSM density profileρCSMR−0.03±0.22up to a break radiusRbr≈ (1.96 ± 0.10) × 1016cm, with a steep density gradient followingρCSMR−2.3±0.5at larger radii. We infer that the flat part of the density profile corresponds to a CSM shell with mass ∼0.021M, and that the progenitor’s effective mass-loss rate varied with time over the range (50–500) × 10−5Myr−1for an adopted wind velocityvw= 1000 km s−1and shock microphysical parametersϵe= 0.1,ϵB= 0.01. These results add to the mounting observational evidence for departures from the traditional single-wind mass-loss scenarios in evolved, massive stars in the centuries leading up to core collapse. Potentially viable scenarios include mass lossmore »powered by gravity waves and/or interaction with a binary companion.

    « less