skip to main content


Title: A Luminous Red Supergiant and Dusty Long-period Variable Progenitor for SN 2023ixf
Abstract

We analyze pre-explosion near- and mid-infrared (IR) imaging of the site of SN 2023ixf in the nearby spiral galaxy M101 and characterize the candidate progenitor star. The star displays compelling evidence of variability with a possible period of ≈1000 days and an amplitude of Δm≈ 0.6 mag in extensive monitoring with the Spitzer Space Telescope since 2004, likely indicative of radial pulsations. Variability consistent with this period is also seen in the near-IRJandKsbands between 2010 and 2023, up to just 10 days before the explosion. Beyond the periodic variability, we do not find evidence for any IR-bright pre-supernova outbursts in this time period. The IR brightness (MKs=10.7mag) and color (JKs= 1.6 mag) of the star suggest a luminous and dusty red supergiant. Modeling of the phase-averaged spectral energy distribution (SED) yields constraints on the stellar temperature (Teff=35001400+800K) and luminosity (logL/L=5.1±0.2). This places the candidate among the most luminous Type II supernova progenitors with direct imaging constraints, with the caveat that many of these rely only on optical measurements. Comparison with stellar evolution models gives an initial mass ofMinit= 17 ± 4M. We estimate the pre-supernova mass-loss rate of the star between 3 and 19 yr before explosion from the SED modeling atṀ3×105to 3 × 10−4Myr−1for an assumed wind velocity ofvw= 10 km s−1, perhaps pointing to enhanced mass loss in a pulsation-driven wind.

 
more » « less
Award ID(s):
2008108 1813466
NSF-PAR ID:
10437528
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
952
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L30
Size(s):
["Article No. L30"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the discovery of an exceptional dimming event in a cool supergiant star in the Local Volume spiral M51. The star, dubbed M51-DS1, was found as part of a Hubble Space Telescope (HST) search for failed supernovae (SNe). The supergiant, which is plausibly associated with a very young (≲6 Myr) stellar population, showed clear variability (amplitude ΔF814W≈ 0.7 mag) in numerous HST images obtained between 1995 and 2016, before suddenly dimming by >2 mag inF814Wsometime between late 2017 and mid-2019. In follow-up data from 2021, the star rebrightened, ruling out a failed supernova. Prior to its near-disappearance, the star was luminous and red (MF814W≲ − 7.6 mag,F606WF814W= 1.9–2.2 mag). Modeling of the pre-dimming spectral energy distribution of the star favors a highly reddened, very luminous (log[L/L]=5.4–5.7) star withTeff≈ 3700–4700 K, indicative of a cool yellow or post-red supergiant (RSG) with an initial mass of ≈26–40M. However, the local interstellar extinction and circumstellar extinction are uncertain, and could be lower: the near-IR colors are consistent with an RSG, which would be cooler (Teff≲ 3700 K) and slightly less luminous (log[L/L]=5.2–5.3), giving an inferred initial mass of ≈19–22M. In either case, the dimming may be explained by a rare episode of enhanced mass loss that temporarily obscures the star, potentially a more extreme counterpart to the 2019–2020 “Great Dimming” of Betelgeuse. Given the emerging evidence that massive evolved stars commonly exhibit variability that can mimic a disappearing star, our work highlights a substantial challenge in identifying true failed SNe.

     
    more » « less
  2. Abstract

    We present measurements of the rest-frame UV spectral slope,β, for a sample of 36 faint star-forming galaxies atz∼ 9–16 discovered in one of the deepest JWST NIRCam surveys to date, the Next Generation Deep Extragalactic Exploratory Public Survey. We use robust photometric measurements for UV-faint galaxies (down toMUV∼ −16), originally published in Leung et al., and measure values of the UV spectral slope via photometric power-law fitting to both the observed photometry and stellar population models obtained through spectral energy distribution (SED) fitting withBagpipes. We obtain a median and 68% confidence interval forβfrom photometric power-law fitting ofβPL=2.70.5+0.5and from SED fitting,βSED=2.30.1+0.2for the full sample. We show that when only two to three photometric detections are available, SED fitting has a lower scatter and reduced biases than photometric power-law fitting. We quantify this bias and find that after correction the medianβSED,corr=2.50.2+0.2. We measure physical properties for our galaxies withBagpipesand find that our faint (MUV=18.10.9+0.7) sample is low in mass (log[M*/M]=7.70.5+0.5), fairly dust-poor (Av=0.10.1+0.2mag), and modestly young (log[age]=7.80.8+0.2yr) with a median star formation rate oflog(SFR)=0.30.4+0.4Myr1. We find no strong evidence for ultrablue UV spectral slopes (β∼ −3) within our sample, as would be expected for exotically metal-poor (Z/Z< 10−3) stellar populations with very high Lyman continuum escape fractions. Our observations are consistent with model predictions that galaxies of these stellar masses atz∼ 9–16 should have only modestly low metallicities (Z/Z∼ 0.1–0.2).

     
    more » « less
  3. Abstract

    We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (flash) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi, Hei/ii, Civ, and Niii/iv/vwith a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,Mu= −18.6 mag,Mg= −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGENand the radiation-hydrodynamics codeHERACLESsuggests dense, solar-metallicity CSM confined tor= (0.5–1) × 1015cm, and a progenitor mass-loss rate ofṀ=102Myr−1. For the assumed progenitor wind velocity ofvw= 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwindphase) during the last ∼3–6 yr before explosion.

     
    more » « less
  4. Abstract

    We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift ofz=0.640.32+0.83(68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm=0.80.53+2.71Gyr, stellar mass of log(M*/M) =9.690.65+0.75, star formation rate of SFR =1.441.35+9.37Myr−1, stellar metallicity of log(Z*/Z) =0.380.42+0.44, and dust attenuation ofAV=0.430.36+0.85mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website.

     
    more » « less
  5. Abstract

    We present 18 yr of OGLE photometry together with spectra obtained over 12 yr revealing that the early Oe star AzV 493 shows strong photometric (ΔI< 1.2 mag) and spectroscopic variability with a dominant, 14.6 yr pattern and ∼40 day oscillations. We estimate the stellar parametersTeff= 42,000 K,logL/L=5.83±0.15,M/M= 50 ± 9, andvsini= 370 ± 40 km s−1. Direct spectroscopic evidence shows episodes of both gas ejection and infall. There is no X-ray detection, and it is likely a runaway star. The star AzV 493 may have an unseen companion on a highly eccentric (e> 0.93) orbit. We propose that close interaction at periastron excites ejection of the decretion disk, whose variable emission-line spectrum suggests separate inner and outer components, with an optically thick outer component obscuring both the stellar photosphere and the emission-line spectrum of the inner disk at early phases in the photometric cycle. It is plausible that AzV 493’s mass and rotation have been enhanced by binary interaction followed by the core-collapse supernova explosion of the companion, which now could be either a black hole or a neutron star. This system in the Small Magellanic Cloud can potentially shed light on OBe decretion disk formation and evolution, massive binary evolution, and compact binary progenitors.

     
    more » « less