skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Usefulness of Personality Traits in Opinion-oriented Tasks
We use a deep bidirectional transformer to extract the Myers-Briggs personality type from user-generated data in a multi-label and multi-class classification setting. Our dataset is large and made up of three available personality datasets of various social media platforms including Reddit, Twitter, and Personality Cafe forum. We induce personality embeddings from our transformer-based model and investigate if they can be used for downstream text classification tasks. Experimental evidence shows that personality embeddings are effective in three classification tasks including authorship verification, stance, and hyperpartisan detection. We also provide novel and interpretable analysis for the third task: hyperpartisan news classification.  more » « less
Award ID(s):
1838145
PAR ID:
10378404
Author(s) / Creator(s):
Date Published:
Journal Name:
The International Conference on Recent Advances in Natural Language Processing (RANLP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks, including the Transformer architecture, have achieved remarkable performance in various time series tasks. However, their effectiveness in handling clinical time series data is hindered by specific challenges: 1) Sparse event sequences collected asynchronously with multivariate time series, and 2) Limited availability of labeled data. To address these challenges, we propose Our code is available at https://github.com/SigmaTsing/TransEHR.git . , a self-supervised Transformer model designed to encode multi-sourced asynchronous sequential data, such as structured Electronic Health Records (EHRs), efficiently. We introduce three pretext tasks for pre-training the Transformer model, utilizing large amounts of unlabeled structured EHR data, followed by fine-tuning on downstream prediction tasks using the limited labeled data. Through extensive experiments on three real-world health datasets, we demonstrate that our model achieves state-of-the-art performance on benchmark clinical tasks, including in-hospital mortality classification, phenotyping, and length-of-stay prediction. Our findings highlight the efficacy of in effectively addressing the challenges associated with clinical time series data, thus contributing to advancements in healthcare analytics. 
    more » « less
  2. Bilingual children at a young age can benefit from exposure to dual language, impacting their language and literacy development. Speech technology can aid in developing tools to accurately quantify children’s exposure to multiple languages, thereby helping parents, teachers, and early-childhood practitioners to better support bilingual children. This study lays the foundation towards this goal using the Hoff corpus containing naturalistic adult-child bilingual interactions collected at child ages 2½, 3, and 3½ years. Exploiting self-supervised learning features from XLSR-53 and HuBERT, we jointly predict the language (English/Spanish) and speaker (adult/child) in each utterance using a multi-task learning approach. Our experiments indicate that a trainable linear combination of embeddings across all Transformer layers of the SSL models is a stronger indicator for both tasks with more benefit to speaker classification. However, language classification for children remains challenging. 
    more » « less
  3. Network embedding has become the cornerstone of a variety of mining tasks, such as classification, link prediction, clustering, anomaly detection and many more, thanks to its superior ability to encode the intrinsic network characteristics in a compact low-dimensional space. Most of the existing methods focus on a single network and/or a single resolution, which generate embeddings of different network objects (node/subgraph/network) from different networks separately. A fundamental limitation with such methods is that the intrinsic relationship across different networks (e.g., two networks share same or similar subgraphs) and that across different resolutions (e.g., the node-subgraph membership) are ignored, resulting in disparate embeddings. Consequentially, it leads to sub-optimal performance or even becomes inapplicable for some downstream mining tasks (e.g., role classification, network alignment. etc.). In this paper, we propose a unified framework MrMine to learn the representations of objects from multiple networks at three complementary resolutions (i.e., network, subgraph and node) simultaneously. The key idea is to construct the cross-resolution cross-network context for each object. The proposed method bears two distinctive features. First, it enables and/or boosts various multi-network downstream mining tasks by having embeddings at different resolutions from different networks in the same embedding space. Second, Our method is efficient and scalable, with a O(nlog(n)) time complexity for the base algorithm and a linear time complexity w.r.t. the number of nodes and edges of input networks for the accelerated version. Extensive experiments on real-world data show that our methods (1) are able to enable and enhance a variety of multi-network mining tasks, and (2) scale up to million-node networks. 
    more » « less
  4. We consider the problem of constructing embeddings of large attributed graphs and supporting multiple downstream learning tasks. We develop a graph embedding method, which is based on extending deep metric and unbiased contrastive learning techniques to 1) work with attributed graphs, 2) enabling a mini-batch based approach, and 3) achieving scalability. Based on a multi-class tuplet loss function, we present two algorithms -- DMT for semi-supervised learning and DMAT-i for the unsupervised case. Analyzing our methods, we provide a generalization bound for the downstream node classification task and for the first time relate tuplet loss to contrastive learning. Through extensive experiments, we show high scalability of representation construction, and in applying the method for three downstream tasks (node clustering, node classification, and link prediction) better consistency over any single existing method. 
    more » « less
  5. Effectively filtering and categorizing the large volume of user-generated content on social media during disaster events can help emergency management and disaster response prioritize their resources. Deep learning approaches, including recurrent neural networks and transformer-based models, have been previously used for this purpose. Capsule Neural Networks (CapsNets), initially proposed for image classification, have been proven to be useful for text analysis as well. However, to the best of our knowledge, CapsNets have not been used for classifying crisis-related messages, and have not been extensively compared with state-of-the-art transformer-based models, such as BERT. Therefore, in this study, we performed a thorough comparison between CapsNet models, state-of-the-art BERT models and two popular recurrent neural network models that have been successfully used for tweet classification, specifically, LSTM and Bi-LSTM models, on the task of classifying crisis tweets both in terms of their informativeness (binary classification), as well as their humanitarian content (multi-class classification). For this purpose, we used several benchmark datasets for crisis tweet classification, namely CrisisBench, CrisisNLP and CrisisLex. Experimental results show that the performance of the CapsNet models is on a par with that of LSTM and Bi-LSTM models for all metrics considered, while the performance obtained with BERT models have surpassed the performance of the other three models across different datasets and classes for both classification tasks, and thus BERT could be considered the best overall model for classifying crisis tweets. 
    more » « less