Abstract Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2V‐1s‐1. With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10−3cm2V‐1s‐1,Here, μwis the weighted mobility, ρ is the electrical resistivity measured in mΩ cm,Tis the absolute temperature in K,Sis the Seebeck coefficient, andkB/e = 86.3 µV K–1. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems.
more »
« less
Design of a miniaturized frequency domain near infrared spectrometer with validation in solid phantoms and human tissue
Hemoglobin is one of the most important chromophores in the human body, since oxygen is carried to the tissue by binding with the hemoglobin. Therefore measuring the concentrations of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) is very important in both clinical settings and academic fields. Frequency domain near infrared spectroscopy (fdNIR spectroscopy) is a technique that can be used to measure the absolute concentrations of HbO and HbR non-invasively and locally. The fdNIR spectrometer utilizes the attenuation and the phase shift (with respect to the source) that an intensity modulated NIR light experiences in order to calculate the absorption (μa) and reduced scattering (μ′s) coefficient of the tissue. In this work, a miniaturized dual-wavelength fdNIR spectrometry instrument is presented with both tissue-like phantom and in vivo occlusion measurements. Systematic tests were performed on tissue phantoms to quantify the accuracy and stability of the instrument. The absolute errors for μaand μ′s were below 15% respectively. The amplitude and phase uncertainty were below 0.25% and 0.35°. In vivo measurements were also conducted to further validate the system.
more »
« less
- Award ID(s):
- 1919038
- PAR ID:
- 10378409
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Journal of Near Infrared Spectroscopy
- Volume:
- 31
- Issue:
- 1
- ISSN:
- 0967-0335
- Format(s):
- Medium: X Size: p. 3-13
- Size(s):
- p. 3-13
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Total alkalinity (AT) is an important parameter in the study of aquatic biogeochemical cycles, chemical speciation modeling, and many other important fundamental and anthropogenic (e.g., industrial) processes. We know little about its short‐term variability, however, because studies are based on traditional bottle sampling typically with coarse temporal resolution. In this work, an autonomous ATsensor, named the Submersible Autonomous Moored Instrument for Alkalinity (SAMI‐alk), was tested for freshwater applications. A comprehensive evaluation was conducted in the laboratory using freshwater standards. The results demonstrated excellent precision and accuracy (± 0.1%–0.4%) over the ATrange from 800 to 3000 μmol L−1. The system had no drift over an 8 d test and also demonstrated limited sensitivity to variations in temperature and ionic strength. Three SAMI‐alks were deployed for 23 d in the Clark Fork River, Montana, with a suite of other sensors. Compared to discrete samples, in situ accuracy for the three instruments were within 10–20 μmol L−1(0.3–0.6%), indicating good performance considering the challenges of in situ measurements in a high sediment, high biofouling riverine environment with large and rapid changes in temperature. These data reveal the complex ATdynamics that are typically missed by coarse sampling. We observed ATdiel cycles as large as 60–80 μmol L−1, as well as a rapid change caused by a runoff event. Significant errors in inorganic carbon system modeling result if these short‐term variations are not considered. This study demonstrates both the feasibility of the technology and importance of high‐resolution ATmeasurements.more » « less
-
Functional near infrared spectroscopy (fNIR) is a noninvasive, portable optical imaging tool to monitor changes in hemodynamic responses (i.e., oxygenated hemoglobin (HbO)) within the prefrontal cortex (PFC) in response to sensory, motor or cognitive activation. We used fNIR for monitoring PFC activation during learning of simulated laparoscopic surgical tasks throughout 4 days of training and testing. Blocked (BLK) and random (RND) practice orders were used to test the practice schedule effect on behavioral, hemodynamic responses and relative neural efficiency (EFFrel-neural) measures during transfer. Left and right PFC for both tasks showed significant differences with RND using less HbO than BLK. Cognitive workload showed RND exhibiting high EFFrel-neural across the PFC for the coordination task while the more difficult cholecystectomy task showed EFFrel-neural differences only in the left PFC. Use of brain activation, behavioral and EFFrel-neural measures can provide a more accurate depiction of the generalization or transfer of learning.more » « less
-
Abstract Existing motor vehicle pollutant measurement techniques, including those that employ ground-based and multirotor small uncrewed aircraft system (sUAS) methods, can accurately measure traffic-related air pollution (TRAP) concentrations at a single location. However, these techniques often lack the mobility to assess pollutant trends across a large horizontal area. Fixed-wing sUAS represents an alternative instrument platform compared to ground-based systems and multirotor sUAS, as fixed-wing sUASs are able to carry air pollutant monitor payloads, have extended endurance, and offer expansive three-dimensional ranges across a field site. To demonstrate the utility of fixed-wing sUAS for urban TRAP assessment, we conducted two flights using a Super Robust Autonomous Aerial Vehicle–Endurant Nimble (RAAVEN) sUAS [University of Colorado (CU) Boulder] at a large field site adjacent to a major highway in Erie, Colorado. Concentrations of solid particulate matter (PM10) and gas-phase (carbon monoxide) pollutants displayed decay as a function of altitude. During the morning flight, PM10concentrations decreased from 19.0μg m−3at ground level to a minimum concentration of 14.3μg m−3at 90 m above ground level. During the afternoon flight, concentrations of PM10displayed minimal vertical stratification, ranging from 8.9 at ground level to 10.0μg m−3at 45 m above ground level. Similarly, pollutants displayed decreasing concentrations as the horizontal distance from the roadway increased. Concentrations of TRAP may be significantly elevated in the area both above and beyond roadways, which contribute to additional pollutant exposure from on-road pollution sources. This study demonstrated that the general behavior of TRAP in near-road environments and that the use of fixed-wing sUAS are viable option for urban air quality measurements. Significance StatementThis study represents one of the first uses of a fixed-wing small uncrewed aircraft system (sUAS) to assess near-roadside concentrations of traffic-related air pollution (TRAP) in urbanized areas. We found that local meteorology, including local wind and solar radiation, had a substantial influence on the concentrations of common air pollutants, including particulate matter, black carbon, carbon monoxide, and carbon dioxide. Furthermore, we found large-scale spatiotemporal variation in pollutant concentrations as a function of the vertical and horizontal distance from the highway, indicating that diminished spatial variation employed in multirotor sUAS studies may not be sufficient to fully assess TRAP in roadside environments.more » « less
-
A<sc>bstract</sc> The production cross sections of$$ {\textrm{B}}_{\textrm{s}}^0 $$ and B+mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb−1. The cross sections are based on measurements of the$$ {\textrm{B}}_{\textrm{s}}^0 $$ →J/ψ(μ+μ−)ϕ(1020)(K+K−) and B+→J/ψ(μ+μ−)K+decay channels. Results are presented in the transverse momentum (pT) range 7–50 GeV/cand the rapidity interval |y|<2.4 for the B mesons. The measuredpT-differential cross sections of B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors,RAA, of the B mesons are determined. ForpT>10 GeV/c, both mesons are found to be suppressed in PbPb collisions (withRAAvalues significantly below unity), with less suppression observed for the$$ {\textrm{B}}_{\textrm{s}}^0 $$ mesons. In thispTrange, theRAAvalues for the B+mesons are consistent with those for inclusive charged hadrons and D0mesons. Below 10 GeV/c, both B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ are found to be less suppressed than either inclusive charged hadrons or D0mesons, with the$$ {\textrm{B}}_{\textrm{s}}^0 $$ RAAvalue consistent with unity. TheRAAvalues found for the B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions.more » « less
An official website of the United States government
