Real-time and non-invasive measurements of tissue concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) are invaluable for research and clinical use. Frequency-domain near-infrared spectroscopy (FD-NIRS) enables non-invasive measurement of these chromophore concentrations in human tissue. We present a small form factor, dual-wavelength, miniaturized FD-NIRS instrument for absolute optical measurements, built around a custom application-specific integrated circuit and a dual-slope/self-calibrating (DS/SC) probe. The modulation frequency is 55 MHz, and the heterodyning technique was used for intensity and phase readout, with an acquisition rate of 0.7 Hz. The instrument consists of a 14 × 17 cm2 printed circuit board (PCB), a Raspberry Pi 4, an STM32G491 microcontroller, and the DS/SC probe. The DS/SC approach enables this instrument to be selective to deeper tissue and conduct absolute measurements without calibration. The instrument was initially validated using a tissue-mimicking solid phantom, and upon confirming its suitability for in vivo, a vascular occlusion experiment on a human subject was conducted. For the phantom experiments, an average of 0.08° phase noise and 0.10% standard deviation over the mean for the intensities was measured at a source–detector distance of 35 mm. The absorption and reduced scattering coefficients had average precisions (variation of measurement over time) of 0.5% and 0.9%, respectively, on a window of ten frames. Results from the in vivo experiment yielded the expected increase in HbO2 and HbR concentration for all measurement types tested, namely SC, DS intensity, and DS phase.
more »
« less
Design of a miniaturized frequency domain near infrared spectrometer with validation in solid phantoms and human tissue
Hemoglobin is one of the most important chromophores in the human body, since oxygen is carried to the tissue by binding with the hemoglobin. Therefore measuring the concentrations of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) is very important in both clinical settings and academic fields. Frequency domain near infrared spectroscopy (fdNIR spectroscopy) is a technique that can be used to measure the absolute concentrations of HbO and HbR non-invasively and locally. The fdNIR spectrometer utilizes the attenuation and the phase shift (with respect to the source) that an intensity modulated NIR light experiences in order to calculate the absorption (μa) and reduced scattering (μ′s) coefficient of the tissue. In this work, a miniaturized dual-wavelength fdNIR spectrometry instrument is presented with both tissue-like phantom and in vivo occlusion measurements. Systematic tests were performed on tissue phantoms to quantify the accuracy and stability of the instrument. The absolute errors for μaand μ′s were below 15% respectively. The amplitude and phase uncertainty were below 0.25% and 0.35°. In vivo measurements were also conducted to further validate the system.
more »
« less
- Award ID(s):
- 1919038
- PAR ID:
- 10378409
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Journal of Near Infrared Spectroscopy
- Volume:
- 31
- Issue:
- 1
- ISSN:
- 0967-0335
- Format(s):
- Medium: X Size: p. 3-13
- Size(s):
- p. 3-13
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2V‐1s‐1. With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10−3cm2V‐1s‐1,Here, μwis the weighted mobility, ρ is the electrical resistivity measured in mΩ cm,Tis the absolute temperature in K,Sis the Seebeck coefficient, andkB/e = 86.3 µV K–1. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems.more » « less
-
Abstract Total alkalinity (AT) is an important parameter in the study of aquatic biogeochemical cycles, chemical speciation modeling, and many other important fundamental and anthropogenic (e.g., industrial) processes. We know little about its short‐term variability, however, because studies are based on traditional bottle sampling typically with coarse temporal resolution. In this work, an autonomous ATsensor, named the Submersible Autonomous Moored Instrument for Alkalinity (SAMI‐alk), was tested for freshwater applications. A comprehensive evaluation was conducted in the laboratory using freshwater standards. The results demonstrated excellent precision and accuracy (± 0.1%–0.4%) over the ATrange from 800 to 3000 μmol L−1. The system had no drift over an 8 d test and also demonstrated limited sensitivity to variations in temperature and ionic strength. Three SAMI‐alks were deployed for 23 d in the Clark Fork River, Montana, with a suite of other sensors. Compared to discrete samples, in situ accuracy for the three instruments were within 10–20 μmol L−1(0.3–0.6%), indicating good performance considering the challenges of in situ measurements in a high sediment, high biofouling riverine environment with large and rapid changes in temperature. These data reveal the complex ATdynamics that are typically missed by coarse sampling. We observed ATdiel cycles as large as 60–80 μmol L−1, as well as a rapid change caused by a runoff event. Significant errors in inorganic carbon system modeling result if these short‐term variations are not considered. This study demonstrates both the feasibility of the technology and importance of high‐resolution ATmeasurements.more » « less
-
Functional near infrared spectroscopy (fNIR) is a noninvasive, portable optical imaging tool to monitor changes in hemodynamic responses (i.e., oxygenated hemoglobin (HbO)) within the prefrontal cortex (PFC) in response to sensory, motor or cognitive activation. We used fNIR for monitoring PFC activation during learning of simulated laparoscopic surgical tasks throughout 4 days of training and testing. Blocked (BLK) and random (RND) practice orders were used to test the practice schedule effect on behavioral, hemodynamic responses and relative neural efficiency (EFFrel-neural) measures during transfer. Left and right PFC for both tasks showed significant differences with RND using less HbO than BLK. Cognitive workload showed RND exhibiting high EFFrel-neural across the PFC for the coordination task while the more difficult cholecystectomy task showed EFFrel-neural differences only in the left PFC. Use of brain activation, behavioral and EFFrel-neural measures can provide a more accurate depiction of the generalization or transfer of learning.more » « less
-
A<sc>bstract</sc> The production cross sections of$$ {\textrm{B}}_{\textrm{s}}^0 $$ and B+mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb−1. The cross sections are based on measurements of the$$ {\textrm{B}}_{\textrm{s}}^0 $$ →J/ψ(μ+μ−)ϕ(1020)(K+K−) and B+→J/ψ(μ+μ−)K+decay channels. Results are presented in the transverse momentum (pT) range 7–50 GeV/cand the rapidity interval |y|<2.4 for the B mesons. The measuredpT-differential cross sections of B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors,RAA, of the B mesons are determined. ForpT>10 GeV/c, both mesons are found to be suppressed in PbPb collisions (withRAAvalues significantly below unity), with less suppression observed for the$$ {\textrm{B}}_{\textrm{s}}^0 $$ mesons. In thispTrange, theRAAvalues for the B+mesons are consistent with those for inclusive charged hadrons and D0mesons. Below 10 GeV/c, both B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ are found to be less suppressed than either inclusive charged hadrons or D0mesons, with the$$ {\textrm{B}}_{\textrm{s}}^0 $$ RAAvalue consistent with unity. TheRAAvalues found for the B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions.more » « less
An official website of the United States government
