skip to main content

This content will become publicly available on September 30, 2023

Title: Modeling microtubule-cytoplasm interaction in plant cells.
Although microtubules in plant cells have been extensively studied, the mechanisms that regulate the spatial organization of microtubules are poorly understood. We hypothesize that the interaction between microtubules and cytoplasmic flow plays an important role in the assembly and orientation of microtubules. To test this hypothesis, we developed a new computational modeling framework for microtubules based on theory and methods from the fluid-structure interaction. We employed the immersed boundary method to track the movement of microtubules in cytoplasmic flow. We also incorporated details of the encounter dynamics when two microtubules collide with each other. We verified our computational model through several numerical tests before applying it to the simulation of the microtubule-cytoplasm interaction in a growing plant cell. Our computational investigation demonstrated that microtubules are primarily oriented in the direction orthogonal to the axis of cell elongation. We validated the simulation results through a comparison with the measurement from laboratory experiments. We found that our computational model, with further calibration, was capable of generating microtubule orientation patterns that were qualitatively and quantitatively consistent with the experimental results. The computational model proposed in this study can be naturally extended to many other cellular systems that involve the interaction between microstructures and more » the intracellular fluid. « less
Authors:
Award ID(s):
1951007
Publication Date:
NSF-PAR ID:
10378436
Journal Name:
bioRxiv
ISSN:
2692-8205
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with β-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies ofmore »the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are transported through the cell. These include (i) entry of budded virus (BV) into the host cell and (ii) egress and budding of nucleocapsids newly produced from the plasma membrane. Prior studies have shown that the entry of nucleocapsids involves the polymerization of actin to propel nucleocapsids to nuclear pores and entry into the nucleus. For the spread of infection, progeny viruses must rapidly exit the infected cells, but the mechanism by which AcMNPV nucleocapsids traverse the cytoplasm is unknown. In this study, we examined whether nucleocapsids interact with lepidopteran kinesin-1 motor molecules and are potentially carried as cargo on microtubules to the plasma membrane in AcMNPV-infected cells. This study indicates that microtubule transport is utilized for the production of budded virus.« less
  2. Abstract The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promotemore »elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.« less
  3. The microtubule cytoskeleton serves as a dynamic structural framework for mitosis in eukaryotic cells. TANGLED1 (TAN1) is a microtubule-binding protein that localizes to the division site and mitotic microtubules and plays a critical role in division plane orientation in plants. Here, in vitro experiments demonstrate that TAN1 directly binds microtubules, mediating microtubule zippering or end-on microtubule interactions, depending on their contact angle. Maize tan1 mutant cells improperly position the preprophase band (PPB), which predicts the future division site. However, cell shape–based modeling indicates that PPB positioning defects are likely a consequence of abnormal cell shapes and not due to TAN1 absence. In telophase, colocalization of growing microtubules ends from the phragmoplast with TAN1 at the division site suggests that TAN1 interacts with microtubule tips end-on. Together, our results suggest that TAN1 contributes to microtubule organization to ensure proper division plane orientation.

  4. Active fluid, composed of kinesin-driven extensile bundles of microtubules, consumes ATP locally to create a self-mixing flow. Mean speed of microtubule-kinesin active fluid was shown to be tunable by varying its components’ concentrations. Such tunability demonstrated the controllability of active fluid with uniform activity. However, how active fluid self-organizes when its activity is non-uniform remains poorly understood. Here, we characterized active fluid behavior and its associated mixing performance in an activity gradient. The activity gradient was created by imposing a temperature gradient because our previous work showed that microtubule-kinesin active fluid exhibited an Arrhenius response to temperature: Increasing temperature sped up active fluid flow, and thus, along a temperature gradient, active fluid flowed faster on one side and slower on the other, forming an activity gradient. We characterized how such a gradient influenced the mixing performance of active fluid in terms of mixing efficiency, stretching rate, and mean squared displacement, comparing with an activity-uniform sample. Our work suggests that applying an activity gradient can serve as a new in-situ method for controlling self-organization and mixing performance of microtubule-kinesin active fluid.
  5. Abstract Hydroplaning is a phenomenon that occurs when a layer of water between the tire and pavement pushes the tire upward. The tire detaches from the pavement, preventing it from providing sufficient forces and moments for the vehicle to respond to driver control inputs such as breaking, accelerating, and steering. This work is mainly focused on the tire and its interaction with the pavement to address hydroplaning. Using a tire model that is validated based on results found in the literature, fluid–structure interaction (FSI) between the tire-water-road surfaces is investigated through two approaches. In the first approach, the coupled Eulerian–Lagrangian (CEL) formulation was used. The drawback associated with the CEL method is the laminar assumption and that the behavior of the fluid at length scales smaller than the smallest element size is not captured. To improve the simulation results, in the second approach, an FSI model incorporating finite element methods (FEMs) and the Navier–Stokes equations for a two-phase flow of water and air, and the shear stress transport k–ω turbulence model, was developed and validated, improving the prediction of real hydroplaning scenarios. With large computational and processing requirements, a grid dependence study was conducted for the tire simulations to minimizemore »the mesh size yet retain numerical accuracy. The improved FSI model was applied to hydroplaning speed and cornering force scenarios.« less