Abstract Aqueous organic redox flow batteries (AORFBs) have received increasing attention as an emergent battery technology for grid‐scale renewable energy storage. However, physicochemical properties of redox‐active organic electrolytes remain fine refinement to maximize their performance in RFBs. Herein, we report a carboxylate functionalized viologen derivative, N,N′‐dibutyrate‐4,4′‐bipyridinium,(CBu)2V, as a highly stable, high capacity anolyte material under near pH neutral conditions.(CBu)2Vcan achieve solubility of 2.1 M and display a reversible, kinetically fast reduction at −0.43 V vs NHE at pH 9. DFT studies revealed that the high solubility of(CBu)2Vis attributed to its high molecular polarity while its negative reduction potential is benefitted from electron‐donating carboxylate groups. A 0.89 V (CBu)2V/(NH)4Fe(CN)6AORFB demonstrated exceptional energy storage performance, specifically, 100 % capacity retention with a discharge energy density of 9.5 Wh L−1for 1000 cycles, power densities of up to 85 mW cm−2, and an energy efficiency of 70 % at 60 mA cm−2.(CBu)2Vnot only represents the most capacity dense viologen with pendant ionic groups and also exhibits the longest (1200 hours or 50 days) and the most stable flow battery performance to date.
more »
« less
Desymmetrization of Viologen Anolytes Empowering Energy Dense, Ultra Stable Flow Batteries toward Long‐Duration Energy Storage
Abstract Aqueous organic redox flow batteries (AORFBs) have been recognized as a promising technology for large‐scale, long‐duration energy storage of renewables (e.g., solar and wind) by overcoming their intermittence and fluctuation. However, simultaneous demonstration of high energy densities and stable cycling are still challenging for AORFBs. Herein, asymmetrically substituted sulfonate viologen molecular designs, e.g. (1‐[3‐sulfonatopropyl]‐1′‐[4‐sulfonatobutane]‐4,4′‐bipyridinium (3,4‐S2V), as capacity dense, chemically stable anolytes for cation exchange AORFBs are presented. The robust cycling performance of 3,4‐S2V is confirmed using half‐cell and full‐cell flow battery studies at pH neutral conditions. The 3,4‐S2V based AORFB is demonstrated with a discharge capacity of 23.2 Ah L−1for 1700 cycles or 100 days without observing chemical degradation. Furthermore, a 3,4‐S2V/(NH4)4[Fe(CN)6] AORFB with a discharge capacity of 259.9 mAh is demonstrated for 50 days of authentic energy storage for the first time with a total capacity retention of 97.77% or a temporal capacity retention rate of 99.955% per day, representing the most stable, longest cycled AORFB to date.
more »
« less
- Award ID(s):
- 1847674
- PAR ID:
- 10378540
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 12
- Issue:
- 41
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Aqueous organic redox flow batteries (AORFBs) are highly attractive for large‐scale energy storage because of their nonflammability, low cost, and sustainability. (2,2,6,6‐Tetramethylpiperidin‐1‐yl)oxyl (TEMPO) derivatives, a class of redox active molecules bearing air‐stable free nitroxyl radicals and high redox potential (>0.8 V vs NHE), has been identified as promising catholytes for AORFBs. However, reported TEMPO based molecules are either permeable through ion exchange membranes or not chemically stable enough for long‐term energy storage. Herein, a new TEMPO derivative functionalized with a dual‐ammonium dicationic group,N1, N1, N1, N3, N3, 2, 2, 6, 6‐nonamethyl‐N3‐(piperidinyloxy)propane‐1,3‐bis(ammonium) dichloride (N2‐TEMPO) as a stable, low permeable catholyte for AORFBs is reported. Ultraviolet–visible (UV–vis) and proton nuclear magnetic resonance (1H‐NMR) spectroscopic studies reveal its exceptional stability and ultra‐low permeability (1.49 × 10−12 cm2 s−1). Coupled with 1,1′‐bis[3‐(trimethylammonio)propyl]‐4,4′‐bipyridinium tetrachloride ((NPr)2V) as an anolyte, a 1.35 VN2‐TEMPO/(NPr)2V AORFB with 0.5 melectrolytes (9.05 Wh L−1) delivers a high power density of 114 mW cm−2and 100% capacity retention for 400 cycles at 60 mA cm−2. At 1.0 melectrolyte concentrations, theN2‐TEMPO/(NPr)2V AORFB achieves an energy density of 18.1 Wh L−1and capacity retention of 90% for 400 cycles at 60 mA cm−2.more » « less
-
Abstract Redox‐active anthraquinone molecules represent promising anolyte materials in aqueous organic redox flow batteries (AORFBs). However, the chemical stability issue and corrosion nature of anthraquinone‐based anolytes in reported acidic and alkaline AORFBs constitute a roadblock for their practical applications in energy storage. A feasible strategy to overcome these issues is migrating to pH‐neutral conditions and employing soluble AQDS salts. Herein, we report the 9,10‐anthraquinone‐2,7‐disulfonic diammonium saltAQDS(NH4)2, as an anolyte material for pH‐neutral AORFBs with solubility of 1.9 min water, which is more than 3 times that of the corresponding sodium salt. Paired with an NH4I catholyte, the resulting pH‐neutral AORFB with an energy density of 12.5 Wh L−1displayed outstanding cycling stability over 300 cycles. Even at the pH‐neutral condition, theAQDS(NH4)2 /NH4I AORFB delivered an impressive energy efficiency of 70.6 % at 60 mA cm−2and a high power density of 91.5 mW cm−2at 100 % SOC. The present AQDS(NH4)2flow battery chemistry opens a new avenue to apply anthraquinone molecules in developing low‐cost and benign pH‐neutral flow batteries for scalable energy storage.more » « less
-
Abstract Rechargeable aqueous batteries with Zn2+as a working‐ion are promising candidates for grid‐scale energy storage because of their intrinsic safety, low‐cost, and high energy‐intensity. However, suitable cathode materials with excellent Zn2+‐storage cyclability must be found in order for Zinc‐ion batteries (ZIBs) to find practical applications. Herein, NaCa0.6V6O16·3H2O (NaCaVO) barnesite nanobelts are reported as an ultra‐stable ZIB cathode material. The original capacity reaches 347 mAh g−1at 0.1 A g−1, and the capacity retention rate is 94% after 2000 cycles at 2 A g−1and 83% after 10 000 cycles at 5 A g−1, respectively. Through a combined theoretical and experimental approach, it is discovered that the unique V3O8layered structure in NaCaVO is energetically favorable for Zn2+diffusion and the structural water situated between V3O8layers promotes a fast charge‐transfer and bulk migration of Zn2+by enlarging gallery spacing and providing more Zn‐ion storage sites. It is also found that Na+and Ca2+alternately suited in V3O8layers are the essential stabilizers for the layered structure, which play a crucial role in retaining long‐term cycling stability.more » « less
-
Abstract Nonaqueous sodium-based batteries are ideal candidates for the next generation of electrochemical energy storage devices. However, despite the promising performance at ambient temperature, their low-temperature (e.g., < 0 °C) operation is detrimentally affected by the increase in the electrolyte resistance and solid electrolyte interphase (SEI) instability. Here, to circumvent these issues, we propose specific electrolyte formulations comprising linear and cyclic ether-based solvents and sodium trifluoromethanesulfonate salt that are thermally stable down to −150 °C and enable the formation of a stable SEI at low temperatures. When tested in the Na||Na coin cell configuration, the low-temperature electrolytes enable long-term cycling down to −80 °C. Via ex situ physicochemical (e.g., X-ray photoelectron spectroscopy, cryogenic transmission electron microscopy and atomic force microscopy) electrode measurements and density functional theory calculations, we investigate the mechanisms responsible for efficient low-temperature electrochemical performance. We also report the assembly and testing between −20 °C and −60 °C of full Na||Na 3 V 2 (PO 4 ) 3 coin cells. The cell tested at −40 °C shows an initial discharge capacity of 68 mAh g −1 with a capacity retention of approximately 94% after 100 cycles at 22 mA g −1 .more » « less
An official website of the United States government
