skip to main content


Title: The nanocaterpillar's random walk: diffusion with ligand–receptor contacts
Particles with ligand–receptor contacts bind and unbind fluctuating “legs” to surfaces, whose fluctuations cause the particle to diffuse. Quantifying the diffusion of such “nanoscale caterpillars” is a challenge, since binding events often occur on very short time and length scales. Here we derive an analytical formula, validated by simulations, for the long time translational diffusion coefficient of an overdamped nanocaterpillar, under a range of modeling assumptions. We demonstrate that the effective diffusion coefficient, which depends on the microscopic parameters governing the legs, can be orders of magnitude smaller than the background diffusion coefficient. Furthermore it varies rapidly with temperature, and reproduces the striking variations seen in existing data and our own measurements of the diffusion of DNA-coated colloids. Our model gives insight into the mechanism of motion, and allows us to ask: when does a nanocaterpillar prefer to move by sliding, where one leg is always linked to the surface, and when does it prefer to move by hopping, which requires all legs to unbind simultaneously? We compare a range of systems (viruses, molecular motors, white blood cells, protein cargos in the nuclear pore complex, bacteria such as Escherichia coli , and DNA-coated colloids) and present guidelines to control the mode of motion for materials design.  more » « less
Award ID(s):
2111163
NSF-PAR ID:
10378568
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
18
Issue:
16
ISSN:
1744-683X
Page Range / eLocation ID:
3130 to 3146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DNA-coated colloids can self-assemble into an incredible diversity of crystal structures, but their applications have been limited by poor understanding and control over the crystallization dynamics. To address this challenge, we use microfluidics to quantify the kinetics of DNA-programmed self-assembly along the entire crystallization pathway, from thermally activated nucleation through reaction-limited and diffusion-limited phases of crystal growth. Our detailed measurements of the temperature and concentration dependence of the kinetics at all stages of crystallization provide a stringent test of classical theories of nucleation and growth. After accounting for the finite rolling and sliding rates of micrometer-sized DNA-coated colloids, we show that modified versions of these classical theories predict the absolute nucleation and growth rates with quantitative accuracy. We conclude by applying our model to design and demonstrate protocols for assembling large single crystals with pronounced structural coloration, an essential step in creating next-generation optical metamaterials from colloids. 
    more » « less
  2. We considered discrete and continuous representations of a thermodynamic process in which a random walker (e.g., a molecular motor on a molecular track) uses periodically pumped energy (work) to pass N sites and move energetically downhill while dissipating heat. Interestingly, we found that, starting from a discrete model, the limit in which the motion becomes continuous in space and time (N→∞) is not unique and depends on what physical observables are assumed to be unchanged in the process. In particular, one may (as usually done) choose to keep the speed and diffusion coefficient fixed during this limiting process, in which case, the entropy production is affected. In addition, we also studied processes in which the entropy production is kept constant as N→∞ at the cost of a modified speed or diffusion coefficient. Furthermore, we also combined this dynamics with work against an opposing force, which made it possible to study the effect of discretization of the process on the thermodynamic efficiency of transferring the power input to the power output. Interestingly, we found that the efficiency was increased in the limit of N→∞. Finally, we investigated the same process when transitions between sites can only happen at finite time intervals and studied the impact of this time discretization on the thermodynamic variables as the continuous limit is approached. 
    more » « less
  3. Abstract

    Photonic crystals—a class of materials whose optical properties derive from their structure in addition to their composition—can be created by self-assembling particles whose sizes are comparable to the wavelengths of visible light. Proof-of-principle studies have shown that DNA can be used to guide the self-assembly of micrometer-sized colloidal particles into fully programmable crystal structures with photonic properties in the visible spectrum. However, the extremely temperature-sensitive kinetics of micrometer-sized DNA-functionalized particles has frustrated attempts to grow large, monodisperse crystals that are required for photonic metamaterial applications. Here we describe a robust two-step protocol for self-assembling single-domain crystals that contain millions of optical-scale DNA-functionalized particles: Monodisperse crystals are initially assembled in monodisperse droplets made by microfluidics, after which they are grown to macroscopic dimensions via seeded diffusion-limited growth. We demonstrate the generality of our approach by assembling different macroscopic single-domain photonic crystals with metamaterial properties, like structural coloration, that depend on the underlying crystal structure. By circumventing the fundamental kinetic traps intrinsic to crystallization of optical-scale DNA-coated colloids, we eliminate a key barrier to engineering photonic devices from DNA-programmed materials.

     
    more » « less
  4. Abstract The self-assembly of DNA-coated colloids into highly-ordered structures offers great promise for advanced optical materials. However, control of disorder, defects, melting, and crystal growth is hindered by the lack of a microscopic understanding of DNA-mediated colloidal interactions. Here we use total internal reflection microscopy to measure in situ the interaction potential between DNA-coated colloids with nanometer resolution and the macroscopic melting behavior. The range and strength of the interaction are measured and linked to key material design parameters, including DNA sequence, polymer length, grafting density, and complementary fraction. We present a first-principles model that screens and combines existing theories into one coherent framework and quantitatively reproduces our experimental data without fitting parameters over a wide range of DNA ligand designs. Our theory identifies a subtle competition between DNA binding and steric repulsion and accurately predicts adhesion and melting at a molecular level. Combining experimental and theoretical results, our work provides a quantitative and predictive approach for guiding material design with DNA-nanotechnology and can be further extended to a diversity of colloidal and biological systems. 
    more » « less
  5. Colloids which adsorb to and straddle a fluid interface form monolayers that are paradigms of particle dynamics on a two dimensional fluid landscape. The dynamics is typically inertialess (Stokes flows) and dominated by interfacial tension so the interface is undeformed by the flow, and pairwise drag coefficients can be calculated. Here the hydrodynamic interaction between identical spherical colloids on a planar gas/liquid interface is calculated as a function of separation distance and immersion depth. Drag coefficients (normalized by the coefficient for an isolated particle on the surface) are computed numerically for the four canonical interactions. The first two are motions along the line of centres, either with the particles mutually approaching each other or moving in the same direction (in tandem). The second two are motions perpendicular to the line of centres, either oppositely directed (shear) or in the same direction (tandem). For mutual approach and shear, the normalized coefficients increase with a decrease in separation due to lubrication forces, and become infinite on contact when the particle is more than half immersed. However, they remain bounded at contact when the particles are less than half immersed because they do not contact underneath the liquid. For in-tandem motion, the normalized coefficients decrease with a decrease in separation; they collapse, for all immersion depths, to the dependence of the drag coefficient on separation for two particles moving in tandem in an infinite medium. The coefficients are used to compute separation against time for colloids driven together by capillary attraction. 
    more » « less