skip to main content


Title: Contribution of anthropogenic vibration sources to crack growth in natural rock arches
Natural arches are culturally valued rock landforms common in sedimentary rocks of the Colorado Plateau and additionally occur broadly around the world. Recent notable collapses of some of these landforms have highlighted the need to better understand the mechanics of their failure. While environmentally driven weathering has been the focus of most previous studies of arch collapse, comparably little attention has been given to anthropogenic vibration sources and how these often slight- to moderate-magnitude shaking events might steadily weaken arches over time. We collected 12–15 months of continuous ambient vibration data from arches and nearby bedrock in both anthropogenically ‘noisy’ and ‘quiet’ locations and used these datasets to develop an annual model of arch peak ground velocity based on magnitude-cumulative frequency distributions. Working from these models, we added vibration events of varying magnitude or frequency of occurrence, informed by field data, imitating arch vibration in response to different anthropogenic activities such as helicopter flights or induced earthquakes. We then applied subcritical fracture mechanics principles to predict annual crack growth rates in an idealized arch under these different vibration conditions. Our results demonstrate that in a single year, cracks grow minimally longer (∼1%) in ‘noisy’ environments than in areas not experiencing anthropogenic vibration energy. Few (1+) 30-s moderate-magnitude events (∼15 mm/s) or many (>37,000) 30-s low-magnitude events (∼2 mm/s) cause markedly increased crack growth. Our approach provides a valuable new framework for assessing the range and frequency of occurrence of vibrations experienced by an arch, and for predicting arch damage. Our results, in turn, yield important new outputs applicable in support of conservation management of these and similar landforms world-wide under exposure to a range of human-induced vibration activity.  more » « less
Award ID(s):
1831283
NSF-PAR ID:
10378603
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
10
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Thousands of rock arches are situated within the central Colorado Plateau—a region experiencing small- to moderate-magnitude contemporary seismicity. Recent anthropogenic activity has substantially increased the seismicity rate in some areas, raising questions about the potential for vibration damage of natural arches, many of which have high cultural value. However, predictions of the vibration response and potential for damage at a given site are limited by a lack of data describing spectral amplification of ground motion on these landforms. We analyzed 13 sandstone arches in Utah, computing site-to-reference spectral amplitude ratios from continuous ambient seismic data, and compared these to spectral ratios during earthquakes and teleseismic activity. We found peak ground velocities on arches at their dominant natural modes (in the range of 2–20 Hz) are ∼20–180 times the velocity on adjacent bedrock, due to amplification arising from slender geometry and low modal damping (0.8%–2.7%). Ambient spectral ratios are generally 1.2–2.0 times the coseismic spectral ratios. Because arches experience highly amplified ground motion, the range of earthquakes considered potentially damaging may need to be revised to include lower-magnitude events. Our results have implications for conservation management of these and other culturally valuable landforms. 
    more » « less
  2. Abstract. Helicopters emit high-power infrasound in a frequency range thatcan coincide with the natural frequencies of rock landforms. While a singleprevious study demonstrated that close-proximity helicopter flight was ableto excite potentially damaging vibration of rock pinnacles, the effects on abroader range of landforms remain unknown. We performed a series ofcontrolled flights at seven sandstone arches and towers in Utah, USA,recording their vibration response to helicopter-sourced infrasound. Wefound that landform vibration velocities increased by a factor of up to 1000during close-proximity helicopter flight as compared to ambient conditionsimmediately prior and that precise spectral alignment between infrasoundand landform natural frequencies is required to excite resonance. We defineadmittance as the ratio of vibration velocity to infrasound pressure andrecorded values of up to 0.11 mm s−1 Pa−1. While our resultsdemonstrate a strong vibration response, the measured velocities are lowerthan likely instantaneously damaging values. Our results serve as a basisfor predicting unfavorable degradation of culturally significant rocklandforms due to regular helicopter overflights. 
    more » « less
  3. Abstract. Natural rock arches are rare and beautiful geologic landforms with important cultural value. As such, their management requires periodic assessment of structural integrity to understand environmental and anthropogenic influences on arch stability. Measurements of passive seismic vibrations represent a rapid and non-invasive technique to describe the dynamic properties of natural arches, including resonant frequencies, modal damping ratios, and mode shapes, which can be monitored over time for structural health assessment. However, commonly applied spectral analysis tools are often limited in their ability to resolve characteristics of closely spaced or complex higher-order modes. Therefore, we investigate two techniques well-established in the field of civil engineering through application to a set of natural arches previously characterized using polarization analysis and spectral peak-picking techniques. Results from enhanced frequency domain decomposition and parametric covariance-driven stochastic subspace identification modal analyses showed generally good agreement with spectral peak-picking and frequency-dependent polarizationanalyses. However, we show that these advanced techniques offer the capability to resolve closely spaced modes including their corresponding modal damping ratios. In addition, due to preservation of phase information, enhanced frequency domain decomposition allows for direct and convenient three-dimensional visualization of mode shapes. These techniques provide detailed characterization of dynamic parameters, which can be monitored to detect structural changes indicating damage and failure, and in addition have the potential to improve numerical models used for arch stability assessment. Results of our study encourage broad adoption and application of these advanced modal analysis techniques for dynamic analysis of a wide range of geological features. 
    more » « less
  4. Abstract

    The dynamic properties of freestanding rock landforms are a function of fundamental material and mechanical parameters, facilitating noninvasive vibration‐based structural assessment. Characterization of resonant frequencies, mode shapes, and damping ratios, however, can be challenging at culturally sensitive geologic features, such as rock arches, where physical access is limited. Using sparse ambient vibration measurements, we describe three resonant modes between 1 and 40 Hz for 17 natural arches in Utah spanning a range of lengths from 3–88 m. Modal polarization data are evaluated to combine field observations with 3‐D numerical models. We find outcrop‐scale elastic moduli vary from 0.8 to 8.0 GPa, correlated with diagenetic processes and identify low damping at all sites. Correlation of dense‐array measurements from one arch validates predictions of simple bending modes and fixed boundary conditions. Our results establish use of sparse ambient resonance measurements for structural assessment and monitoring of arches and similar freestanding geologic features worldwide.

     
    more » « less
  5. Changes in precipitation amount, intensity and frequency in response to global warming are examined using global high‐resolution (16 km) climate model simulations based on the European Centre for Medium‐range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) conducted under Project Athena.

    Our study shows the increases of zonal‐mean total precipitation in all latitudes except the northern subtropics (15°–30°N) and southern subtropics‐to‐midlatitudes (30°–40°S). The probability distribution function (PDF) changes in different latitudes suggest a higher occurrence of light precipitation (LP; ≤1 mm/day) and heavy precipitation (HP; ≥30 mm/day) at the expense of moderate precipitation reduction (MP; 1–30 mm/day) from Tropics to midlatitudes, but an increase in all categories of precipitation in polar regions.

    On the other hand, the PDF change with global warming in different precipitation climatological zones presents another image. For all regions and seasons examined, there is an HP increase at the cost of MP, but LP varies. The reduced MP in richer precipitation zones resides in the PDF peak intensities, which linearly increase with the precipitation climatology zones. In particular in the Tropics (20°S to 20°N), the precipitation PDF has a flatter distribution (i.e. HP and LP increases with MP reduction) except for the Sahara Desert. In the primary precipitation zones in the subtropics (20°–40°) of both hemispheres, precipitation over land switches toward higher intensity (HP increases, but MP and LP decrease) in both winter and summer, while precipitation over ocean in both seasons shows a flattening trend in the intensity distribution. For the major precipitation zones of the mid‐to‐high latitude belt (40°–70°), PDF of precipitation tends to be flatter over ocean in summer, but switches toward higher intensities over land in both summer and winter, as well as over ocean in winter.

     
    more » « less