skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cryogenic Operation of a Silicon-Organic Hybrid (SOH) Modulator at 50 Gbps and 4 K Ambient Temperature
We demonstrate cryogenic operation of a silicon-organic hybrid (SOH) Mach-Zehnder modu- lator. The device is based on a dedicated material formulation and allows for 50 Gbps on-off-keying (OOK) at 4 K - a record-high line rate generated by an MZM at this temperature.  more » « less
Award ID(s):
2036514
PAR ID:
10378652
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
European Conference on Optical Communication
ISSN:
2688-2531
Page Range / eLocation ID:
Th3B.3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carlini, Nicholas; Demontis, Ambra; Chen, Yizheng (Ed.)
    Adversarial training (AT) has become a popular choice for training robust networks. However, it tends to sacrifice clean accuracy heavily in favor of robustness and suffers from a large generalization error. To address these concerns, we propose Smooth Adversarial Training (SAT), guided by our analysis on the eigenspectrum of the loss Hessian. We find that curriculum learning, a scheme that emphasizes on starting “easy” and gradually ramping up on the “difficulty” of training, smooths the adversarial loss landscape for a suitably chosen difficulty metric. We present a general formulation for curriculum learning in the adversarial setting and propose two difficulty metrics based on the maximal Hessian eigenvalue (H-SAT) and the softmax probability (P-SAT). We demonstrate that SAT stabilizes network training even for a large perturbation norm and allows the network to operate at a better clean accuracy versus robustness trade-off curve compared to AT. This leads to a significant improvement in both clean accuracy and robustness compared to AT, TRADES, and other baselines. To highlight a few results, our best model improves normal and robust accuracy by 6% and 1% on CIFAR-100 compared to AT, respectively. On Imagenette, a ten-class subset of ImageNet, our model outperforms AT by 23% and 3% on normal and robust accuracy respectively. 
    more » « less
  2. The identification of students at risk for academic failure in undergraduate chemistry courses has been heavily addressed in the literature. Arguably one of the strongest and most well-supported predictors of undergraduate success in chemistry is the mathematics portion of the SAT (SAT-M), a college-entrance, standardized test administered by the College Board. While students scoring in the bottom quartile of the SAT-M (herein referred to as at-risk) perform significantly worse on first-semester chemistry assessments, little is known of the topics on which these students differentially struggle. The purpose of this study is to provide insight as to which first-semester chemistry topics present an incommensurate challenge to at-risk students. Students were identified as either at-risk or not at-risk via SAT-M scores. Students’ assessment responses were collected across four semesters of first-semester chemistry courses at a large, public university ( N = 5636). At-risk students struggled consistently across all topics but disproportionately with mole concept and stoichiometry. Analyzing the trend in topics suggests that the struggles of at-risk students are not entirely attributable to topics that rely heavily on algorithms or algebraic math. Moreso, at-risk students found to have performed well on mole concept and stoichiometry went on to perform similarly as their not at-risk peers. The results support an instructional emphasis on these topics with reviewed literature offering promising, practical options to better serve at-risk students and broaden representation in the sciences. 
    more » « less
  3. Population dynamics and life history traits of the ‘giant’ limpet Scutellastra laticostata on intertidal limestone platforms at Rottnest Island, Western Australia, were recorded by interannual (January/February) monitoring of limpet density and size structure, and relocation of marked individuals, at 3 locations over periods of 13-16 yr between 1993 and 2020. Limpet densities ranged from 4 to 9 ind. m -2 on wave-swept seaward margins of platforms at 2 locations and on a rocky notch at the landward margin of the platform at a third. Juvenile recruits (25-55 mm shell length) were present each year, usually at low densities (<1 m -2 ), but localized pulses of recruitment occurred in some years. Annual survival rates of marked limpets varied among sites and cohorts, ranging from 0.42 yr -1 at the notch to 0.79 and 0.87 yr -1 on the platforms. A mass mortality of limpets on the platforms occurred in 2003, likely mediated by thermal stress during daytime low tides, coincident with high air temperatures and calm seas. Juveniles grew rapidly to adult size within 2 yr. Asymptotic size (L ∞ , von Bertalanffy growth model) ranged from 89 to 97 mm, and maximum size from 100 to 113 mm, on platforms. Growth rate and maximum size were lower on the notch. Our empirical observations and simulation models suggest that these populations are relatively stable on a decadal time scale. The frequency and magnitude of recruitment pulses and high rate of adult survival provide considerable inertia, enabling persistence of these populations in the face of sporadic climatic extremes. 
    more » « less
  4. null (Ed.)
    The surface structure and reaction pathways of 7-octenoic acid are studied on a clean copper substrate in ultrahigh vacuum using a combination of reflection–absorption infrared spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption and scanning-tunneling microscopy, supplemented by first-principles density functional theory calculations. 7-Octenoic acid adsorbs molecularly on copper below ∼260 K in a flat-lying configuration at low coverages, becoming more upright as the coverage increases. It deprotonates following adsorption at ∼300 K to form an η 2 -7-octenoate species. This also lies flat at low coverages, but forms a more vertical self-assembled monolayer as the coverage increases. Heating causes the 7-octenoate species to start to tilt, which produces a small amount of carbon dioxide at ∼550 K and some hydrogen in a peak at ∼615 K ascribed to the reaction of these tilted species. The majority of the decarbonylation occurs at ∼650 K when CO 2 and hydrogen evolve simultaneously. Approximately half of the carbon is deposited on the surface as oligomeric species that undergo further dehydrogenation to evolve more hydrogen at ∼740 K. This leaves a carbonaceous layer on the surface, which contains hexagonal motifs connoting the onset of graphitization of the surface. 
    more » « less
  5. Abstract The importance of environmental difference among sites and dispersal limitations of species to the explanation of diversity differs among biological systems and geographical regions. We hypothesized that climate and then dispersal limitation will predominantly explain the similarity of alpine vegetation at increasing distances between pairs of regions at subcontinental extent. We computed the similarity of all pairs of 23 European mountain regions below 50° N after dividing the species lists of each region by calcareous or siliceous substrates. Distance decay in similarity was better fitted by a cubic polynomial than a negative exponential function, and the fit was better on calcareous than on siliceous substrate. Commonality analysis revealed that the proportion of explanation of beta diversity by climatic difference had unimodal patterns on a gradient of increasing distance between regions, while explanation by dispersal limitation had consistently rising patterns on both substrates. On siliceous substrate, dispersal limitation explained more of the variation in beta diversity only at longer distances, but it was predominant at all distances on calcareous substrate. The steeper response to distance at <1600 km and >2600 km may indicate dispersal limitation at different temporal scales, and the uptick in the response to distance at the longest distances may reflect how isolated some regions have been before and since the last glacial maximum. 
    more » « less