skip to main content


Title: Structure–mechanics relationship of hybrid polyvinyl alcohol-collagen composite by molecular dynamics simulations
Abstract

Polyvinyl alcohol (PVA) is a water-soluble synthetic polymer that can be used to make hydrogels for biomedical applications as well as biodegradable bags and films; however, compared to other plastics currently used for containers, it lacks mechanical strength, thermal stability, and can easily absorb water from humid environments. Although mechanical improvement has been observed by blending PVA with collagen in a hybrid hydrogel, there is a lack of fundamental understanding of the molecular mechanism, and it is not clear whether the improvement is limited to a hydrated state. Here, using classical molecular dynamics simulations based on fully atomistic models, we develop the equilibrated molecular structure of PVA with collagen and characterize its mechanics. We show that by interacting with a collagen molecule, PVA is equilibrated to a more ordered structure with each residue interacting with the near neighbors by forming more hydrogen bonds locally, making the structure stiffer than pure PVA. The structure shows higher thermal stability before melting, as well as higher rigidity in water. Our results provide the mechanism of the mechanical advantages of hybrid PVA-collagen polymer. The study demonstrates that the structure and mechanics of a synthetic polymer can be tuned by a tiny amount of a natural polymer at the molecular interface. Moreover, it may shed light on identifying a way to improve the mechanics of biodegradable polymer materials without adding much cost, which is crucial for environmental safety.

Impact statement

Blending natural and synthetic polymers (e.g., polyvinyl alcohol [PVA] and collagen in a hybrid hydrogel) has shown advantages in polymer mechanics, but there is a lack of fundamental understanding. Using molecular dynamics (MD) simulations based on fully atomistic models, we develop the equilibrated structure of the PVA with collagen and characterize its mechanics. We show that by interacting with a collagen molecule, PVA is equilibrated to a more ordered structure with each residue interacting with the near neighbors by forming more H-bonds locally and the structure is stiffer than pure PVA. Moreover, the structure shows a higher thermal stability before the melting point of PVA, as well as higher rigidity in water. Our results demonstrate that the structure and mechanics of a synthetic polymer can be tuned by a tiny amount of a natural polymer at the molecular interface. It provides the mechanism of the mechanical advantages as experimentally observed. This study paves the way for the multiscale modeling and mechanical design of the hybrid polymer material. It sheds light on identifying a way to improve the mechanics of biodegradable materials without adding much cost for both material functionality and environmental safety.

Graphical abstract 
more » « less
Award ID(s):
2145392
NSF-PAR ID:
10378657
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press (CUP)
Date Published:
Journal Name:
MRS Bulletin
Volume:
48
Issue:
4
ISSN:
0883-7694
Page Range / eLocation ID:
p. 332-341
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrogel-encapsulated catalysts are an attractive tool for low-cost intensification of (bio)-processes. Polyvinyl alcohol-sodium alginate hydrogels crosslinked with boric acid and post-cured with sulfate (PVA-SA-BS) have been applied in bioproduction and water treatment processes, but the low pH required for crosslinking may negatively affect biocatalyst functionality. Here, we investigate how crosslinking pH (3, 4, and 5) and time (1, 2, and 8 h) affect the physicochemical, elastic, and process properties of PVA-SA-BS beads. Overall, bead properties were most affected by crosslinking pH. Beads produced at pH 3 and 4 were smaller and contained larger internal cavities, while optical coherence tomography suggested polymer cross-linking density was higher. Optical coherence elastography revealed PVA-SA-BS beads produced at pH 3 and 4 were stiffer than pH 5 beads. Dextran Blue release showed that pH 3-produced beads enabled higher diffusion rates and were more porous. Last, over a 28-day incubation, pH 3 and 4 beads lost more microspheres (as cell proxies) than beads produced at pH 5, while the latter released more polymer material. Overall, this study provides a path forward to tailor PVA-SA-BS hydrogel bead properties towards a broad range of applications, such as chemical, enzymatic, and microbially catalyzed (bio)-processes.

     
    more » « less
  2. Abstract

    Considering the design of structures and materials for use as replacements for biological structures, polymer nanocomposites are desirable materials of construction since they have a large design space, allowing property customization. Biobased nanofibers are particularly suited for these applications since they have high specific mechanical properties and cytocompatibility. Motivated by these attributes, this work examines nanocomposite aerogels and an aerogel/hydrogel hybrid structure designed to mimic an intervertebral disc (IVD), with the aerogel and hydrogel serving as analogs for the annulus fibrosus and the nucleus pulposus, respectively. The aerogels and aerogel/hydrogel hybrid structure contain a mixture of biobased nanofibers, cellulose nanocrystals (CNCs) and chitin nanofibers (ChNFs), and a polyvinyl alcohol (PVA) matrix. Characterization of the structure and properties shows that the nanocomposite aerogels containing CNC/ChNF mixtures have larger pores and decreased mechanical properties as compared to aerogels containing only CNCs or only ChNFs. Building on these results, a hybrid comprised of a CNC/PVA aerogel and a CNC/ChNF/PVA hydrogel is constructed with mechanical properties similar to natural IVDs, providing initial validation of the hybrid concept for IVD replacements and pathways to customization through changing material composition in the aerogel and hydrogel and changing the aerogel and hydrogel fractions in the hybrid structure.

     
    more » « less
  3. This study employs all-atomistic (AA) molecular dynamics (MD) simulations to investigate the crystallization and melting behavior of polar and nonpolar polymer chains on monolayers of graphene and graphene oxide (GO). Polyvinyl alcohol (PVA) and polyethylene (PE) are used as representative polar and nonpolar polymers, respectively. A modified order parameter is introduced to quantify the degree of two-dimensional (2D) crystallization of polymer chains. Our results show that PVA and PE chains exhibit significantly different crystallization behavior. PVA chains tend to form a more rounded, denser, and folded-stemmed lamellar structure, while PE chains tend to form an elongated straight pattern. The presence of oxidation groups on the GO substrate reduces the crystallinity of both PVA and PE chains, which is derived from the analysis of modified order parameter. Meanwhile, the crystallization patterns of polymer chains are influenced by the percentage, chemical components, and distribution of the oxidation groups. In addition, our study reveals that 2D crystalized polymer chains exhibit different melting behavior depending on their polarity. PVA chains exhibit a more molecular weight-dependent melting temperature than PE chains, which have a lower melting temperature and are relatively insensitive to molecular weight. These findings highlight the critical role of substrate and chain polarity in the crystallization and melting of polymer chains. Overall, our study provides valuable insights into the design of graphene-based polymer heterostructures and composites with tailored properties. 
    more » « less
  4. Combining experimental and computational studies of nanocomposite interfaces is highly needed to gain insight into their performance. However, there are very few literature reports, combining well-controlled atomic force microscopy experiments with molecular dynamic simulations, which explore the role of polymer chemistry and assembly on interface adhesion and shear strength. In this work, we investigate graphene oxide (GO)-polymer interfaces prevalent in nanocomposites based on a nacre-like architectures. We examine the interfacial strength resulting from van der Waals and hydrogen bonding interactions by comparing the out-of-plane separation and in-plane shear deformations of GO-polyethylene glycol (PEG) and GO-polyvinyl alcohol (PVA). The investigation reveals an overall better mechanical performance for the anhydrous GO-PVA system in both out-of-plane and in-plane deformation modes, highlighting the benefits of the donor-acceptor hydrogen bond formation present in GO-PVA. Such bond formation results in interchain hydrogen bond networks leading to stronger interfaces. By contrast, PEG, a hydrogen bond acceptor only, relies primarily on van der Waals inter-chain interactions, typically resulting in weaker interactions. The study also predicts that water addition increases the adhesion of GOPEG but decreases the adhesion of GO-PVA, and slightly increases the shear strength in both systems. Furthermore, by comparing simulations and experiments, we show that the CHARMM force field has enough accuracy to capture the effect of polymer content, water distribution, and to provide quantitative guidance for achieving optimum interfacial properties. Therefore, the study demonstrates an effective methodology, in the Materials Genome spirit, toward the design of 2D materials-polymer nanocomposites system for applications demanding mechanical robustness. 
    more » « less
  5. Abstract

    Water evaporation systems with solar energy as the primary driving energy have received extensive attention in recent years. This work studies the preparation method and performance of hydrogel evaporators using chitosan and polyvinyl alcohol (PVA) as a framework and carbon nanoparticles (CNPs) as the photothermal material. The evaporation rate of CPC (chitosan/PVA and CNPs) hydrogel obtained reaches 2.28 kg m−2 h−1. Simultaneously, a three-dimensional structure is designed based on the two-dimensional double-layer evaporation system in this study. An evaporator with a tiny-pool structure and a hydrogel with a dome-arrayed structure is designed. These two structures achieve highly efficient evaporation rates of 2.28 kg m−2 h−1and 3.80 kg m−2 h−1, respectively. These optimized designs improve the evaporation rate of the overall system by ~ 66.7%. The developed evaporation devices provide a promising pathway for developing the double-layer evaporators, which promote the new development of water purification with a solar-driven evaporation system.

     
    more » « less