skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Tailoring polyvinyl alcohol-sodium alginate (PVA-SA) hydrogel beads by controlling crosslinking pH and time
Abstract

Hydrogel-encapsulated catalysts are an attractive tool for low-cost intensification of (bio)-processes. Polyvinyl alcohol-sodium alginate hydrogels crosslinked with boric acid and post-cured with sulfate (PVA-SA-BS) have been applied in bioproduction and water treatment processes, but the low pH required for crosslinking may negatively affect biocatalyst functionality. Here, we investigate how crosslinking pH (3, 4, and 5) and time (1, 2, and 8 h) affect the physicochemical, elastic, and process properties of PVA-SA-BS beads. Overall, bead properties were most affected by crosslinking pH. Beads produced at pH 3 and 4 were smaller and contained larger internal cavities, while optical coherence tomography suggested polymer cross-linking density was higher. Optical coherence elastography revealed PVA-SA-BS beads produced at pH 3 and 4 were stiffer than pH 5 beads. Dextran Blue release showed that pH 3-produced beads enabled higher diffusion rates and were more porous. Last, over a 28-day incubation, pH 3 and 4 beads lost more microspheres (as cell proxies) than beads produced at pH 5, while the latter released more polymer material. Overall, this study provides a path forward to tailor PVA-SA-BS hydrogel bead properties towards a broad range of applications, such as chemical, enzymatic, and microbially catalyzed (bio)-processes.

 
more » « less
Award ID(s):
1937290
NSF-PAR ID:
10383390
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A novel composite hydrogel bead composed of sodium alginate (SA) and aldehyde cellulose nanocrystal (DCNC) was developed for antibiotic remediation through a one-step cross-linking process in a calcium chloride bath. Structural and physical properties of the hydrogel bead, with varying composition ratios, were analyzed using techniques such as BET analysis, SEM imaging, tensile testing, and rheology measurement. The optimal composition ratio was found to be 40% (SA) and 60% (DCNC) by weight. The performance of the SA–DCNC hydrogel bead for antibiotic remediation was evaluated using doxycycline (DOXY) and three other tetracyclines in both single- and multidrug systems, yielding a maximum adsorption capacity of 421.5 mg g−1 at pH 7 and 649.9 mg g−1 at pH 11 for DOXY. The adsorption mechanisms were investigated through adsorption studies focusing on the effects of contact time, pH, concentration, and competitive contaminants, along with X-ray photoelectron spectroscopy analysis of samples. The adsorption of DOXY was confirmed to be the synergetic effects of chemical reaction, electrostatic interaction, hydrogen bonding, and pore diffusion/surface deposition. The SA–DCNC composite hydrogel demonstrated high reusability, with more than 80% of its adsorption efficiency remaining after five cycles of the adsorption–desorption test. The SA–DCNC composite hydrogel bead could be a promising biomaterial for future antibiotic remediation applications in both pilot and industrial scales because of its high adsorption efficiency and ease of recycling. 
    more » « less
  2. Abstract Teaching experiments involving edible, biodegradable calcium alginate beads serve as an attractive model system to introduce upper secondary age students to core chemistry topics through innovations in sustainable consumer products. A teaching experiment is described that engages students with the synthesis of calcium alginate hydrogel beads from sodium alginate and calcium lactate, two food-safe and renewable materials. The beads’ outer membranes are a result of ionic interactions between carboxylate groups from alginate strands and the divalent calcium cations between them, thus forming cross-linked polymers. Protonation of the carboxylate groups on the alginate strands decreases crosslinking density affecting bead formation. First, various concentrations of citric acid are used to lower the pH of the sodium alginate solution and the effect on the calcium alginate bead formation is observed. A correlation between pH and bead shape and firmness is derived. This information is then used to explore juices with varying natural acidities. The experiment is amenable to implementation in the classroom or as an at-home activity. Learning outcomes include acid-base reactions, chemical bonding, polymer structures, and green chemistry concepts. Students consider the environmental challenges of traditional plastics used in packaging and how innovative new commercial products are attempting to provide solutions. 
    more » « less
  3. Abstract

    Inspired by the avoidance of toxic chemical crosslinkers and harsh reaction conditions, this work describes a poly(vinyl alcohol)‐based (PVA) double‐network (DN) hydrogel aimed at maintaining biocompatibility through the combined use of bio‐friendly additives and freezing–thawing cyclic processing for the application of synthetic soft‐polymer implants. This DN hydrogel is studied using techniques that characterize both its chemical and mechanical behavior. A variety of bio‐friendly additives are screened for their effectiveness at improving the toughness of the PVA hydrogel system in monotonic tension. Starch is selected as the best additive for further tensile testing as it brings about a near 30% increase in ultimate tensile strength and maintains ease of processing. This PVA–starch DN sample is then studied for its tensile fatigue properties through cyclic, strain‐controlled testing to develop a fatigue life curve. Though an increase in monotonic tensile strength is observed, the PVA–starch DN hydrogel does not bring about an improvement in the fatigue behavior as compared to the control. Although synthetic hydrogel reinforcement is widely researched, this work presents the first fatigue analysis of its kind and it is intended to serve as a guide for future fatigue studies of reinforced hydrogels.

     
    more » « less
  4. Abstract

    Brush polymers have emerged as components of novel materials that show huge potential in multiple disciplines and applications, including self‐assembling photonic crystals, drug delivery vectors, biomimetic lubricants, and ultrasoft elastomers. However, an understanding of how this unique topology can affect the properties of highly solvated materials like hydrogels remain under investigated. Here, it is investigated how the high functionality and large overall size of brush polymers enhances the gelation kinetics of low polymer weight percent gels, enabling 100‐fold faster gelation rates and 15‐fold higher stiffness values than gels crosslinked by traditional star polymers of the same composition and polymer chain length. This work demonstrates that brush polymer topology provides a useful means to control gelation kinetics without the need to manipulate polymer composition or crosslinking chemistry. The unique architecture of brush polymers also results in restrained or even nonswelling behavior at different temperatures, regardless of the polymer concentration. Brush polymers therefore are an interesting tool for examining how high‐functionality polymer building blocks can affect structure–property relationships and chemical kinetics in hydrogel materials, and also provide a useful rapidly‐setting hydrogel platform with tunable properties and great potential for multiple material applications.

     
    more » « less
  5. Despite national and international regulations, plastic microbeads are still widely used in personal care and consumer products (PCCPs) as exfoliants and rheological modifiers, causing significant microplastic pollution following use. As a sustainable alternative, microbeads were produced by extrusion of biomass solutions and precipitation into anti-solvent. Despite using novel blends of biodegradable, non-derivatized biomass including cellulose and Kraft lignin, resulting microbeads are within the shape, size, and stiffness range of commercial plastic microbeads, even without crosslinking. Solution processability and resulting bead shape and Young’s modulus can be tuned via biomass source, concentration, and degree of polymerization; biomass concentration, extrusion geometry, and precipitation and extraction conditions control the bead size. Lignin incorporation reduces the solution viscosity, which improves processability but also produces flatter beads with higher moduli than cellulose-only microbeads. While some lignin leaches from the beads when stored in water, adding surfactants like sodium dodecyl sulfate suppresses this effect, resulting in good mechanical stability over 2 months with no noticeable structural degradation. The stability of these mixed-source biomass microbeads—despite the absence of chemical crosslinking or derivatization—makes this route a promising, robust approach for obtaining environmentally-benign microbeads of tunable size and stiffness for use in PCCPs. 
    more » « less