skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: All-Dielectric Intersubband Polaritonic Metasurface with Giant Second-Order Nonlinear Response
We demonstrate an extremely nonlinear all-dielectric metasurface that employs intersubband polaritons to achieve a second-harmonic conversion coefficient of 3 mW/W2, and second-harmonic power conversion efficiency of 0.045% at a modest pump intensity of 6.7 kW/cm2 more » « less
Award ID(s):
1810318
PAR ID:
10378668
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
All-dielectric intersubband polaritonic metasurface with giant second-order nonlinear response
Volume:
JTH2D.17
Page Range / eLocation ID:
JM1G.4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-fidelity periodic poling over long lengths is required for robust, quasi-phase-matched second-harmonic generation using the fundamental, quasi-TE polarized waveguide modes in a thin-film lithium niobate (TFLN) waveguide. Here, a shallow-etched ridge waveguide is fabricated in x-cut magnesium oxide doped TFLN and is poled accurately over 5 mm. The high fidelity of the poling is demonstrated over long lengths using a non-destructive technique of confocal scanning second-harmonic microscopy. We report a second-harmonic conversion efficiency of up to 939 %.W−1(length-normalized conversion efficiency 3757 %.W−1.cm−2), measured at telecommunications wavelengths. The device demonstrates a narrow spectral linewidth (1 nm) and can be tuned precisely with a tuning characteristic of 0.1 nm/°C, over at least 40 °C without measurable loss of efficiency. 
    more » « less
  2. We demonstrate efficient on-chip green light generation via frequency upconversion in silicon nitride–thin-film lithium niobate (SiN-TFLN) hybrid waveguides, obtained by transfer printing LN coupons on selected areas of photonic integrated circuits (PICs). By utilizing modal phase matching (MPM), our devices achieve a high normalized conversion efficiency of 42.5% W−1cm−2in a single-pass, 2.4-mm-long waveguide configuration. The SiN–LN transition in the waveguide inherently facilitates mode conversion, transforming a higher-order second-harmonic mode into a fundamental TE mode, ensuring coherent, narrow-linewidth, green light emission. Our waveguide platform gives rise to a wavelength shift of ∼1 nm for every 10 nm of waveguide width variation and temperature-induced wavelength tuning of ∼0.02 nm/°C. 
    more » « less
  3. Abstract Carbon nanotubes (CNTs) possess extremely anisotropic electronic, thermal, and optical properties owing to their 1D character. While their linear optical properties have been extensively studied, nonlinear optical processes, such as harmonic generation for frequency conversion, remain largely unexplored in CNTs, particularly in macroscopic CNT assemblies. In this work, macroscopic films of aligned and type‐separated (semiconducting and metallic) CNTs are synthesized and polarization‐dependent third‐harmonic generation (THG) from the films with fundamental wavelengths ranging from 1.5 to 2.5 µm is studied. Both films exhibited strongly wavelength‐dependent, intense THG signals, enhanced through exciton resonances, and third‐order nonlinear optical susceptibilities of 2.50 × 10−19 m2 V−2(semiconducting CNTs) and 1.23 × 10−19 m2 V−2(metallic CNTs), respectively are found, for 1.8 µm excitation. Further, through systematic polarization‐dependent THG measurements, the values of all elements of the susceptibility tensor are determined, verifying the macroscopically 1D nature of the films. Finally, polarized THG imaging is performed to demonstrate the nonlinear anisotropy in the large‐size CNT film with good alignment. These findings promise applications of aligned CNT films in mid‐infrared frequency conversion, nonlinear optical switching, polarized pulsed lasers, polarized long‐wave detection, and high‐performance anisotropic nonlinear photonic devices. 
    more » « less
  4. Abstract Wavelength, polarization and orbital angular momentum of light are important degrees of freedom for processing and encoding information in optical communication. Over the years, the generation and conversion of orbital angular momentum in nonlinear optical media has found many novel applications in the context of optical communication and quantum information processing. With that hindsight, here orbital angular momentum conversion of optical vortices through second-harmonic generation from only one atomically thin WS2monolayer is demonstrated at room temperature. Moreover, it is shown that the valley-contrasting physics associated with the nonlinear optical selection rule in WS2monolayer precisely determines the output circular polarization state of the generated second-harmonic vortex. These results pave the way for building future miniaturized valleytronic devices with atomic-scale thickness for many applications such as chiral photon emission, nonlinear beam generation, optoelectronics, and quantum computing. 
    more » « less
  5. Abstract Superior infrared nonlinear optical (NLO) crystals are in urgent demand in the development of lasers and optical technologies for communications and computing. The critical challenge is to find a crystal with large non‐resonant phase‐matchable NLO coefficients and high laser damage threshold (LDTs) simultaneously, which however scale inversely. This work reports such a material, MgSiP2,that exhibits a large second harmonic generation (SHG) coefficient ofd14≈d36= 89 ± 5 pm V−1at 1550 nm fundamental wavelength, surpassing the commercial NLO crystals AgGaS2, AgGaSe2, and ZnGeP2. First principles theory reveals the polarizability and geometric arrangement of the [SiP4] tetrahedral units as the origin of this large nonlinear response. Remarkably, it also exhibits a high LDT value of 684 GW cm−2, which is six times larger than ZnGeP2and three times larger than CdSiP2. It has a wide transparency window of 0.53–10.35 µm, allowing broadband tunability. Further, it is Type I and Type II phase‐matchable with large effective SHG coefficients ofdeff,I≈80.2 pm V−1anddeff,II≈73.4 pm V−1. The outstanding properties of MgSiP2make it a highly attractive candidate for optical frequency conversion in the infrared. 
    more » « less