skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Second-harmonic optical vortex conversion from WS2 monolayer
Abstract Wavelength, polarization and orbital angular momentum of light are important degrees of freedom for processing and encoding information in optical communication. Over the years, the generation and conversion of orbital angular momentum in nonlinear optical media has found many novel applications in the context of optical communication and quantum information processing. With that hindsight, here orbital angular momentum conversion of optical vortices through second-harmonic generation from only one atomically thin WS2monolayer is demonstrated at room temperature. Moreover, it is shown that the valley-contrasting physics associated with the nonlinear optical selection rule in WS2monolayer precisely determines the output circular polarization state of the generated second-harmonic vortex. These results pave the way for building future miniaturized valleytronic devices with atomic-scale thickness for many applications such as chiral photon emission, nonlinear beam generation, optoelectronics, and quantum computing.  more » « less
Award ID(s):
1653032 1552871
PAR ID:
10154147
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Optical vortices have the tremendous potential to increase data capacity by leveraging the extra degree of freedom of orbital angular momentum. On the other hand, anisotropic 2D materials are promising building blocks for future integrated polarization‐sensitive photonic and optoelectronic devices. Here, highly anisotropic third‐harmonic optical vortex beam generation is demonstrated with fork holograms patterned on ultrathin 2D germanium arsenide flakes. It is shown that the anisotropic nonlinear vortex beam generation can be achieved independent of the fork grating orientation with respect to the crystallographic orientation. Furthermore, 2D fork hologram is designed to generate multiple optical vortices having different topological charges with strong anisotropic responses. These results pave the way toward the advancement of 2D material‐based anisotropic nonlinear optical devices for future applications in photonic integrated circuits, optical communication, and optical information processing. 
    more » « less
  2. Abstract Metasurfaces have drawn considerable attentions for their revolutionary capability of tailoring the amplitude, phase, and polarization of light. By integrating the nonlinear optical processes into metasurfaces, new wavelengths are introduced as an extra degree of freedom for further advancing the device performance. However, most of the existing nonlinear plasmonic metasurfaces are based on metallic nanoantennas as meta‐atoms, suffering from strong background transmission, low laser damage threshold and small nonlinear conversion efficiency. Here, Babinet‐inverted plasmonic metasurfaces made of C‐shaped nanoapertures as meta‐atoms are designed and demonstrated to solve these issues. Rotation‐gradient nonlinear metasurfaces are further constructed for producing spin‐selective second‐harmonic vortex beams with the orbital angular momentum (OAM) and beam diffraction angle determined by both the spin states of the fundamental wave and second‐harmonic emission. The results enable new types of functional metasurface chips for applications in spin, OAM, and wavelength multiplexed optical trapping, all‐optical communication, and optical data storage. 
    more » « less
  3. Abstract Thin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in‐plane ferroelectric material that exhibits a giant nonlinear optical effect, group‐IV monochalcogenide SnSe, is reported. Nanometer‐scale ferroelectric domains with ≈90°/270° twin boundaries or ≈180° domain walls are revealed in physical‐vapor‐deposited SnSe by lateral piezoresponse force microscopy. Atomic structure characterization reveals both parallel and antiparallel stacking of neighboring van der Waals ferroelectric layers, leading to ferroelectric or antiferroelectric ordering. Ferroelectric domains exhibit giant nonlinear optical activity due to coherent enhancement of second‐harmonic fields and the as‐resulted second‐harmonic generation was observed to be 100 times more intense than monolayer WS2. This work demonstrates in‐plane ferroelectric ordering and giant nonlinear optical activity in SnSe, which paves the way for applications in on‐chip nonlinear optical components and nonvolatile memory devices. 
    more » « less
  4. Abstract Two‐dimensional (2D) transition metal dichalcogenides (TMDCs) such as MoS2exhibit exceptionally strong nonlinear optical responses, while nanoscale control of the amplitude, polar orientation, and phase of the nonlinear light in TMDCs remains challenging. In this work, by interfacing monolayer MoS2with epitaxial PbZr0.2Ti0.8O3(PZT) thin films and free‐standing PZT membranes, the amplitude and polarization of the second harmonic generation (SHG) signal are modulated via ferroelectric domain patterning, which demonstrates that PZT membranes can lead to in‐operando programming of nonlinear light polarization. The interfacial coupling of the MoS2polar axis with either the out‐of‐plane polar domains of PZT or the in‐plane polarization of domain walls tailors the SHG light polarization into different patterns with distinct symmetries, which are modeled via nonlinear electromagnetic theory. This study provides a new material platform that enables reconfigurable design of light polarization at the nanoscale, paving the path for developing novel optical information processing, smart light modulators, and integrated photonic circuits. 
    more » « less
  5. Winding number is a topologically significant quantity that has found valuable applications in various areas of mathematical physics. Here, topological qubits are shown capable of formation from winding number superpositions and so of being used in the communication of quantum information in linear optical systems, the most common realm for quantum communication. In particular, it is shown that winding number qubits appear in several aspects of such systems, including quantum electromagnetic states of spin, momentum, orbital angular momentum, polarization of beams of particles propagating in free-space, optical fiber, beam splitters, and optical multiports. 
    more » « less