The role of diffuse electron precipitation in the formation of subauroral polarization streams (SAPS) is investigated with the Multiscale Atmosphere‐Geospace Environment (MAGE) model. Diffuse precipitation is derived from the distribution of drifting electrons. SAPS manifest themselves as a separate mesoscale flow channel in the duskside ionosphere, which gradually merges with the primary auroral convection toward dayside as the equatorward auroral boundary approaches the poleward Region‐2 field‐aligned currents (FACs) boundary. SAPS expand to lower latitudes and toward the nightside during the main phase of a geomagnetic storm, associated with magnetotail earthward plasma flows building up the ring current and intensifying Region‐2 FACs and electron precipitation. SAPS shrink poleward and sunward as the interplanetary magnetic field turns northward. When diffuse precipitation is turned off in a controlled MAGE simulation, ring current and duskside Region‐2 FACs become weaker, but subauroral zonal ion drifts are still comparable to auroral convection. However, subauroral and auroral convection manifest as a single broad flow channel without showing any mesoscale structure. SAPS overlap with the downward Region‐2 FACs equatorward of diffuse precipitation, where poleward electric fields are strong due to a low conductance in the subauroral ionosphere. The Region‐2 FACs extend to latitudes lower than the diffuse precipitation because the ring current protons penetrate closer to the Earth than the electrons do. This study reproduces the key physics of SAPS formation and their evolution in the coupled magnetosphere‐ionosphere during a geomagnetic storm. Diffuse electron precipitation is demonstrated to play a critical role in determining SAPS location and structure.
Embedded Region 1 and 2 field‐aligned currents (FACs), intense FAC layers of mesoscale latitudinal width near the interface between large‐scale Region 1 and Region 2 FACs, are related to dramatic phenomena in the ionosphere such as discrete arcs, inverted‐V precipitation, and dawnside auroral polarization streams. These relationships suggest that the embedded FACs are potentially important for understanding ionospheric heating and magnetosphere‐ionosphere (M‐I) coupling and instabilities. Previous case studies of embedded FACs have led to the speculation that they may result from enhanced M‐I convection during active times. To explore this idea further, we investigate statistically their occurrence rates under a variety of geomagnetic conditions with a large event list constructed from 17 years of Defense Meteorological Satellite Program observations. The identification procedure is fully automated and explicit. The statistical results indicate that embedded Region 1 and 2 FACs are common, and that they have a higher chance to occur when the level of geomagnetic activity is higher (given by various indices), supporting the idea that they result from enhanced M‐I convection.
more » « less- PAR ID:
- 10378680
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 127
- Issue:
- 11
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We present the observational and modeling study focused on the major factors determining the spatiotemporal structure of the high‐latitude ionospheric plasma density enhancement—the tongue of ionization (TOI) structure—during the 2015 St. Patrick's Day geomagnetic storm. We use the Global Self‐consistent Model of the Thermosphere, Ionosphere, Protonosphere (GSM TIP) to reproduce the plasma density distribution, and the results are compared with the observational data as deduced from the ground‐based global positioning system total electron content and in situ plasma probe measurements at different altitudes. Both the simulation and observation results show that a large‐scale TOI‐like structure of enhanced plasma density extends from the dayside midlatitude region toward the central polar cap along the antisunward cross‐polar convection flow. We reveal an important role of the clockwise convection cell rotation for the modification of TOI structure. According to model results during the storm main phase, the neutral thermospheric composition, particularly the “tongue” in n(N2), modifies the spatial structure of TOI in such a way that (1) the near‐pole region of enhanced plasma density is shifted to the duskside and, (2) at
F region heights, the TOI is split into the dusk and dawn branches. The signature of TOI in the topside ionosphere considerably differs from that in theF region because of a lesser influence of the neutral composition changes at higher altitudes. Model results revealed that at plasmaspheric heights, the TOI structure appears in both the dawn and dusk convection cells. -
Abstract The sub‐auroral polarization stream (SAPS) is a region of westward high velocity plasma convection equatorward of the auroral oval that plays an important role in mid‐latitude space weather dynamics. In this study, we present observations of SAPS flows extending across the North American sector observed during the recovery phase of a minor geomagnetic storm. A resurgence in substorm activity drove a new set of field‐aligned currents (FACs) into the ionosphere, initiating the SAPS. An upward FAC system is the most prominent feature spreading across most SAPS local times, except near dusk, where a downward current system is pronounced. The location of SAPS flows remained relatively constant, firmly inside the trough, independent of the variability in the location and intensity of the FACs. The SAPS flows were sustained even after the FACs weakened and retreated polewards with a decline in geomagnetic activity. The observations indicate that the mid‐latitude trough plays a crucial role in determining the location of the SAPS and that SAPS flows can be sustained even after the magnetospheric driver has weakened.
-
Abstract In this study, the Global Ionosphere Thermosphere Model is utilized to investigate the inter‐hemispheric asymmetry in the ionosphere‐thermosphere (I‐T) system at mid‐ and high‐latitudes (|geographic latitude| > 45°) associated with inter‐hemispheric differences in (a) the solar irradiance, (b) geomagnetic field, and (c) magnetospheric forcing under moderate geomagnetic conditions. Specifically, we have quantified the relative significance of the above three causes to the inter‐hemispheric asymmetries in the spatially weighted averaged E‐region electron density, F‐region neutral mass density, and horizontal neutral wind along with the hemispheric‐integrated Joule heating. Further, an asymmetry index defined as the percentage differences of these four quantities between the northern and southern hemispheres (|geographic latitude| > 45°) was calculated. It is found that: (a) The difference of the solar extreme ulutraviolet (EUV) irradiance plays a dominant role in causing inter‐hemispheric asymmetries in the four examined I‐T quantities. Typically, the asymmetry index for the E‐region electron density and integrated Joule heating at solstices with F10.7 = 150 sfu can reach 92.97% and 38.25%, respectively. (b) The asymmetric geomagnetic field can result in a strong daily variation of inter‐hemispheric asymmetries in the F‐region neutral wind and hemispheric‐integrated Joule heating over geographic coordinates. Their amplitude of asymmetry indices can be as large as 20.81% and 42.52%, which can be comparable to the solar EUV irradiance effect. (c) The contributions of the asymmetric magnetospheric forcing, including particle precipitation and ion convection pattern, can cause the asymmetry of integrated Joule heating as significant as 28.43% and 34.72%, respectively, which can be even stronger than other causes when the geomagnetic activity is intense.
-
Abstract Foreshock transients can result in significant dynamic pressure perturbations downstream, causing the magnetopause to move locally outward and inward. These near‐magnetopause phenomena in turn generate magnetospheric field‐aligned currents (FACs). FACs driven by solar wind impulses are commonly found to be due to flow vortices, but it remains unclear whether the FACs driven by those localized foreshock transients are contributed by flow vortices or pressure gradients. We report on a fortuitous conjunction between the Magnetospheric Multiscale (MMS) mission, which was observing a foreshock transient at the flank of the bow shock, and the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, immediately downstream of MMS, which was observing magnetopause disturbances arising from that transient. Using observations from the three THEMIS spacecraft to calculate local current density perturbations within the outward motion region of the magnetosphere, we find that flow vortices play a dominant role in generating the current there; the contribution from pressure gradients is one order of magnitude smaller. Using a global hybrid simulation that reproduces the observed foreshock transient perturbations, we traced the simulated FACs generated by the transient's interaction with the magnetopause. We find that in the outward magnetopause motion region the simulated FACs are driven by flow vortices, in agreement with THEMIS observations. Deeper inside the magnetosphere, the faster convection of bipolar flow vortices than the local magnetospheric flow leads to reversal of the simulated FACs. Our results improve our understanding of how foreshock transients disturb and energize the magnetosphere‐ionosphere system.