Abstract Research investigating transcranial direct current stimulation (tDCS) to enhance cognitive training augments both our understanding of its long‐term effects on cognitive plasticity as well as potential applications to strengthen cognitive interventions. Previous work has demonstrated enhancement of working memory training while applying concurrent tDCS to the dorsolateral prefrontal cortex (DLPFC). However, the optimal stimulation parameters are still unknown. For example, the timing of tDCS delivery has been shown to be an influential variable that can interact with task learning. In the present study, we used tDCS to target the right DLPFC while participants trained on a visuospatial working memory task. We sought to compare the relative efficacy of online stimulation delivered during training to offline stimulation delivered either immediately before or afterwards. We were unable to replicate previously demonstrated benefits of online stimulation; however, we did find evidence that offline stimulation delivered after training can actually be detrimental to training performance relative to sham. We interpret our results in light of evidence suggesting a role of the right DLPFC in promoting memory interference, and conclude that while tDCS may be a promising tool to influence the results of cognitive training, more research and an abundance of caution are needed before fully endorsing its use for cognitive enhancement. This work suggests that effects can vary substantially in magnitude and direction between studies, and may be heavily dependent on a variety of intervention protocol parameters such as the timing and location of stimulation delivery, about which our understanding is still nascent. 
                        more » 
                        « less   
                    
                            
                            Enhancing Working Memory Training with Transcranial Direct Current Stimulation
                        
                    
    
            Abstract Working memory (WM) is a fundamental cognitive ability that supports complex thought but is limited in capacity. Thus, WM training interventions have become very popular as a means of potentially improving WM-related skills. Another promising intervention that has gained increasing traction in recent years is transcranial direct current stimulation (tDCS), a noninvasive form of brain stimulation that can modulate cortical excitability and temporarily increase brain plasticity. As such, it has the potential to boost learning and enhance performance on cognitive tasks. This study assessed the efficacy of tDCS to supplement WM training. Sixty-two participants were randomized to receive either right prefrontal, left prefrontal, or sham stimulation with concurrent visuospatial WM training over the course of seven training sessions. Results showed that tDCS enhanced training performance, which was strikingly preserved several months after training completion. Furthermore, we observed stronger effects when tDCS was spaced over a weekend break relative to consecutive daily training, and we also demonstrated selective transfer in the right prefrontal group to nontrained tasks of visual and spatial WM. These findings shed light on how tDCS may be leveraged as a tool to enhance performance on WM-intensive learning tasks. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1658268
- PAR ID:
- 10378743
- Date Published:
- Journal Name:
- Journal of Cognitive Neuroscience
- Volume:
- 28
- Issue:
- 9
- ISSN:
- 0898-929X
- Page Range / eLocation ID:
- 1419 to 1432
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) has been shown to enhance divergent and convergent creative thinking. Yet, how stimulation impacts creative performance over time, and what cognitive mechanisms underlie any such enhancement, remain largely unanswered questions. In the present research, we aimed to (1) verify the impact of DLPFC tDCS on both convergent and divergent thinking, and further investigated (2) the temporal dynamics of divergent thinking, focusing on the serial order effect (i.e., the tendency for ideas to become more original and less frequent over time), and (3) any role that cognitive inhibition may play in mediating any effect of stimulation on creative thinking (considering the DLPFC’s involvement in driving inhibitory processes that are also relevant for creative thinking). In a within-subjects design, twenty-six participants received three types of cross-hemispheric tDCS stimulation over the DLPFC (left cathodal and right anodal, L-R+; left anodal and right cathodal, L+R-; and sham). Before stimulation, they completed a pre-flanker task measuring cognitive inhibition; during stimulation, they completed the Alternate Uses Task (AUT), Remote Associates Test (RAT), and post-flanker task. Results showed that, compared with the sham stimulation, originality of responses in the AUT was significantly enhanced in the L+R- condition, while no tDCS effect was observed for the RAT. Additionally, compared with the other stimulation conditions, we found a diminished serial order effect in the L+R- condition characterized by an accelerated production of more original ideas. Critically, the L+R- condition was accompanied by better performance on the flanker task. Our findings thus verify that L+R- tDCS over the DLPFC accelerates idea originality also providing tentative clues that inhibition may act as a cognitive mechanism underlying enhancements in divergent thinking resulting from frontal lobe neuromodulation.more » « less
- 
            null (Ed.)Abstract Neuroimaging and transcranial direct current stimulation (tDCS) research has revealed that generating novel ideas is associated with both reductions and increases in prefrontal cortex (PFC) activity, and engagement of posterior occipital cortex, among other regions. However, there is substantial variability in the robustness of these tDCS‐induced effects due to heterogeneous sample sizes, different creativity measures, and methodological diversity in the application of tDCS across laboratories. To address these shortcomings, we used twelve different montages within a standardized tDCS protocol to investigate how altering activity in frontotemporal and occipital cortex impacts creative thinking. Across four experiments, 246 participants generated either the common or an uncommon use for 60 object pictures while undergoing tDCS. Participants also completed a control short-term memory task. We applied active tDCS for 20 min at 1.5 mA through two 5 cm × 5 cm electrodes over left or right ventrolateral prefrontal (areas F7, F8) or occipital (areas O1, O2) cortex, concurrent bilateral stimulation of these regions across polarities, or sham stimulation. Cathodal stimulation of the left, but not right, ventrolateral PFC improved fluency in creative idea generation, but had no effects on originality, as approximated by measures of semantic distance. No effects were obtained for the control tasks. Concurrent bilateral stimulation of the ventrolateral PFC regardless of polarity direction, and excitatory stimulation of occipital cortex did not alter task performance. Highlighting the importance of cross-experimental methodological consistency, these results extend our past findings and contribute to our understanding of the role of left PFC in creative thinking.more » « less
- 
            Brain simulation techniques have demonstrated undisputable therapeutic effects on neural diseases. Invasive stimulation techniques like deep brain stimulation (DBS) and noninvasive techniques like transcranial magnetic stimulation (TMS) have been approved by FDA as treatments for many drug resist neural disorders and diseases. Developing noninvasive, deep, and targeted brain stimulation techniques is currently one of the important tasks in brain researches. Transcranial direct current stimulation (tDCS) and transcranial alternative current stimulation (tACS) techniques have the advantages of low cost and portability. However, neither of them can produce targeted stimulation due to lacking of electrical field focusing mechanism. Recently, Grossman et al. reported using the down beating signals of two tACS signals to accomplish focused stimulation. By sending two sine waves running at slightly different high frequencies (~2kHz), they demonstrated that they can modulate a “localized” neuron group at the difference frequency of the two sine waves and at the same time avoid excitation of neurons at other locations. As a result, equivalent focusing effect was accomplished by such beating mechanism. In this work, we show neither theoretically nor experimentally the beating mechanism can produce “focusing effect” and the beating signal spread globally across the full brain. The localized modulation effect likely happened right at the electrode contact sites when the electrode contact area is small and the current is concentrated. We conclude that to accomplish noninvasive and focused stimulation at current stage the only available tool is the focused TMS system we recently demonstrated.more » « less
- 
            BackgroundLow working memory (WM) capacity is associated with alcohol use disorders (AUDs). The importance of WM to adaptive functioning has led to a recent influx of studies attempting to improve individual WM capacity using various cognitive training methods. The present study aimed to examine the efficacy of complex WM training for improving WM capacity among individuals with AUD. MethodsIndividuals were randomized to complete either adaptive WM training or active control training. We applied a methodologically rigorous and structured approach, including a battery of near and moderate transfer measures in those with AUDs and a control group. Additionally, we examined cognitive factors (at baseline) and other predictors of adherence, training task improvement, and transfer. ResultsResults suggest improved WM in individuals with AUDs and controls, as evidenced by improved scores on several transfer measures, after adaptive WM training. However, individuals with AUDs showed poorer adherence and less improvement on the training tasks themselves. Neither IQ, WM, sex, nor condition predicted adherence. Level of training task performance, baseline WM, and IQ predicted transfer task improvement. ConclusionsThis is the first study to rigorously examine both the efficacy of WM training in those with AUDs, and predictors of successful training program adherence and transfer in a large sample. Among study completers, results suggest that AUD status does not predict training improvement and transfer. However, AUD status did predict lower program adherence. WM training was more effective in those with higher cognitive ability at baseline. This study provides direct translation to the development of cognitive interventions for treating AUD.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    