Mitochondria play a central role in muscle metabolism and function. A unique family of iron–sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3–NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.
more »
« less
A VDAC1-mediated NEET protein chain transfers [2Fe-2S] clusters between the mitochondria and the cytosol and impacts mitochondrial dynamics
Mitochondrial inner NEET (MiNT) and the outer mitochondrial membrane (OMM) mitoNEET (mNT) proteins belong to the NEET protein family. This family plays a key role in mitochondrial labile iron and reactive oxygen species (ROS) homeostasis. NEET proteins contain labile [2Fe-2S] clusters which can be transferred to apo-acceptor proteins. In eukaryotes, the biogenesis of [2Fe-2S] clusters occurs within the mitochondria by the iron–sulfur cluster (ISC) system; the clusters are then transferred to [2Fe-2S] proteins within the mitochondria or exported to cytosolic proteins and the cytosolic iron–sulfur cluster assembly (CIA) system. The last step of export of the [2Fe-2S] is not yet fully characterized. Here we show that MiNT interacts with voltage-dependent anion channel 1 (VDAC1), a major OMM protein that connects the intermembrane space with the cytosol and participates in regulating the levels of different ions including mitochondrial labile iron (mLI). We further show that VDAC1 is mediating the interaction between MiNT and mNT, in which MiNT transfers its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol. This MiNT–VDAC1–mNT interaction is shown both experimentally and by computational calculations. Additionally, we show that modifying MiNT expression in breast cancer cells affects the dynamics of mitochondrial structure and morphology, mitochondrial function, and breast cancer tumor growth. Our findings reveal a pathway for the transfer of [2Fe-2S] clusters, which are assembled inside the mitochondria, to the cytosol.
more »
« less
- PAR ID:
- 10378745
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 7
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
NEET proteins are conserved 2Fe-2S proteins that regulate the levels of iron and reactive oxygen species in plant and mammalian cells. Previous studies of seedlings with constitutive expression of AtNEET, or its dominant-negative variant H89C (impaired in 2Fe-2S cluster transfer), revealed that disrupting AtNEET function causes oxidative stress, chloroplast iron overload, activation of iron-deficiency responses, and cell death. Because disrupting AtNEET function is deleterious to plants, we developed an inducible expression system to study AtNEET function in mature plants using a time-course proteomics approach. Here, we report that the suppression of AtNEET cluster transfer function results in drastic changes in the expression of different members of the ferredoxin (Fd), Fd-thioredoxin (TRX) reductase (FTR), and TRX network of Arabidopsis, as well as in cytosolic cluster assembly proteins. In addition, the expression of Yellow Stripe-Like 6 (YSL6), involved in iron export from chloroplasts was elevated. Taken together, our findings reveal new roles for AtNEET in supporting the Fd-TFR-TRX network of plants, iron mobilization from the chloroplast, and cytosolic 2Fe-2S cluster assembly. In addition, we show that the AtNEET function is linked to the expression of glutathione peroxidases (GPXs), which play a key role in the regulation of ferroptosis and redox balance in different organisms.more » « less
-
It was previously postulated that when intracellular free iron content is elevated in bacteria, the Ferric uptake regulator (Fur) binds its co-repressor a mononuclear ferrous iron to regulate intracellular iron homeostasis. However, the proposed iron-bound Fur had not been identified in any bacteria. In previous studies, we have demonstrated that Escherichia coli Fur binds a [2Fe-2S] cluster in response to elevation of intracellular free iron content, and that binding of the [2Fe-2S] cluster turns on Fur as an active repressor to bind a specific DNA sequence known as the Fur-box. Here we find that the iron-sulfur cluster assembly scaffold protein IscU is required for the [2Fe-2S] cluster assembly in Fur, as deletion of IscU inhibits the [2Fe-2S] cluster assembly in Fur and prevents activation of Fur as a repressor in E. coli cells in response to elevation of intracellular free iron content. Additional studies reveal that IscU promotes the [2Fe-2S] cluster assembly in apo-form Fur and restores its Fur-box binding activity in vitro. While IscU is also required for the [2Fe-2S] cluster assembly in the Haemophilus influenzae Fur in E. coli cells, deletion of IscU does not significantly affect the [2Fe-2S] cluster assembly in the E. coli ferredoxin and siderophore-reductase FhuF. Our results suggest that IscU may have a unique role for the [2Fe-2S] cluster assembly in Fur, and that regulation of intracellular iron homeostasis is closely coupled with iron-sulfur cluster biogenesis in E. coli.more » « less
-
Escherichia coli Ferric uptake regulator (Fur) binds a [2Fe-2S] cluster, not a mononuclear iron, when the intracellular free iron content is elevated in E. coli cells. Here we report that the C-terminal domain (residues 83-148) of E. coli Fur (Fur-CTD) is sufficient to bind the [2Fe-2S] cluster in response to elevation of the intracellular free iron content in E. coli cells. Deletion of gene fur in E. coli cells increases the intracellular free iron content and promotes the [2Fe-2S] cluster binding in the Fur-CTD in the cells grown in LB medium under aerobic growth conditions. When the Fur-CTD is expressed in wild type E. coli cells grown in M9 medium supplemented with increasing concentrations of iron, the Fur-CTD also progressively binds a [2Fe-2S] cluster with a maximum occupancy of about 36%. Like the E. coli Fur-CTD, the CTD of the Haemophilus influenzae Fur can also bind a [2Fe-2S] cluster in wild type E. coli cells grown in M9 medium supplemented with increasing concentrations of iron, indicating that binding of the [2Fe-2S] cluster in the C-terminal domain is highly conserved among Fur proteins. The results suggest that the Fur-CTD can be used as a physiological probe to assess the intracellular free iron content in bacteria.more » « less
-
Abstract Reviewed herein is the development of novel polymer‐supported [2Fe‐2S] catalyst systems for electrocatalytic and photocatalytic hydrogen evolution reactions. [FeFe] hydrogenases are the best known naturally occurring metalloenzymes for hydrogen generation, and small‐molecule, [2Fe‐2S]‐containing mimetics of the active site (H‐cluster) of these metalloenzymes have been synthesized for years. These small [2Fe‐2S] complexes have not yet reached the same capacity as that of enzymes for hydrogen production. Recently, modern polymer chemistry has been utilized to construct an outer coordination sphere around the [2Fe‐2S] clusters to provide site isolation, water solubility, and improved catalytic activity. In this review, the various macromolecular motifs and the catalytic properties of these polymer‐supported [2Fe‐2S] materials are surveyed. The most recent catalysts that incorporate a single [2Fe‐2S] complex, termed single‐site [2Fe‐2S] metallopolymers, exhibit superior activity for H2production.more » « less