It was previously postulated that when intracellular free iron content is elevated in bacteria, the Ferric uptake regulator (Fur) binds its co-repressor a mononuclear ferrous iron to regulate intracellular iron homeostasis. However, the proposed iron-bound Fur had not been identified in any bacteria. In previous studies, we have demonstrated that Escherichia coli Fur binds a [2Fe-2S] cluster in response to elevation of intracellular free iron content, and that binding of the [2Fe-2S] cluster turns on Fur as an active repressor to bind a specific DNA sequence known as the Fur-box. Here we find that the iron-sulfur cluster assembly scaffold protein IscU is required for the [2Fe-2S] cluster assembly in Fur, as deletion of IscU inhibits the [2Fe-2S] cluster assembly in Fur and prevents activation of Fur as a repressor in E. coli cells in response to elevation of intracellular free iron content. Additional studies reveal that IscU promotes the [2Fe-2S] cluster assembly in apo-form Fur and restores its Fur-box binding activity in vitro. While IscU is also required for the [2Fe-2S] cluster assembly in the Haemophilus influenzae Fur in E. coli cells, deletion of IscU does not significantly affect the [2Fe-2S] cluster assembly in the E. coli ferredoxin and siderophore-reductase FhuF. Our results suggest that IscU may have a unique role for the [2Fe-2S] cluster assembly in Fur, and that regulation of intracellular iron homeostasis is closely coupled with iron-sulfur cluster biogenesis in E. coli.
more »
« less
The C-terminal domain of the ferric uptake regulator (Fur) binds a [2Fe–2S] cluster to sense the intracellular free iron content in Escherichia coli
Escherichia coli Ferric uptake regulator (Fur) binds a [2Fe-2S] cluster, not a mononuclear iron, when the intracellular free iron content is elevated in E. coli cells. Here we report that the C-terminal domain (residues 83-148) of E. coli Fur (Fur-CTD) is sufficient to bind the [2Fe-2S] cluster in response to elevation of the intracellular free iron content in E. coli cells. Deletion of gene fur in E. coli cells increases the intracellular free iron content and promotes the [2Fe-2S] cluster binding in the Fur-CTD in the cells grown in LB medium under aerobic growth conditions. When the Fur-CTD is expressed in wild type E. coli cells grown in M9 medium supplemented with increasing concentrations of iron, the Fur-CTD also progressively binds a [2Fe-2S] cluster with a maximum occupancy of about 36%. Like the E. coli Fur-CTD, the CTD of the Haemophilus influenzae Fur can also bind a [2Fe-2S] cluster in wild type E. coli cells grown in M9 medium supplemented with increasing concentrations of iron, indicating that binding of the [2Fe-2S] cluster in the C-terminal domain is highly conserved among Fur proteins. The results suggest that the Fur-CTD can be used as a physiological probe to assess the intracellular free iron content in bacteria.
more »
« less
- Award ID(s):
- 2050032
- PAR ID:
- 10495549
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- BioMetals
- Volume:
- 36
- Issue:
- 6
- ISSN:
- 0966-0844
- Page Range / eLocation ID:
- 1285 to 1294
- Subject(s) / Keyword(s):
- iron-sulfur cluster, iron homeostasis, ferric uptake regulator, Fur-box, intracellular free iron content.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ciurli, S (Ed.)The Ferric uptake regulator (Fur) proteins from Haemophilus influenzae and Escherichia coli overexpressed in E. coli cells (MC4100) grown in M9 medium supplemented with 57Fe were studied with Mössbauer spectroscopy. Previous studies have shown that Fur proteins from H. influenzae and E. coli bind a [2Fe-2S]2+ cluster in response to elevation of intracellular free iron content. Here we find that when the [2Fe-2S] 2+ clusters in purified Fur proteins are reduced with dithionite, the reduced clusters are quickly decomposed, forming compounds with two distinct spectral signatures of high spin Fe(II) in tetrahedral and octahedral coordination, respectively. The instability of the reduced [2Fe-2S]1+ cluster in Fur is unique, as the [2Fe-2S]2+ clusters in many other proteins can reversibly undergo one-electron reduction-oxidation. The Mössbauer spectra of whole E. coli cells overexpressing Fur proteins show a quadrupole doublet with the isomer shift of δ1 = 0.28 mm/s and ΔEQ1 = 0.52 mm/s, typical for oxidized [2Fe-2S]2+ clusters and identical with that in the purified Fur protein. The corresponding spectra in large applied magnetic fields show the diamagnetic pattern that unambiguously reveals an exchange-coupled system with a diamagnetic electronic ground state, which confirms its assignment to the oxidized [2Fe-2S]2+ cluster clusters from Fur. No reduced [2Fe-2S]1+ clusters of Fur are observed in the whole-cell E. coli spectra. The Mössbauer spectra of the whole-cell E. coli without the Fur expression do not contain the components associated with the [2Fe-2S]2+ cluster of Fur.more » « less
-
Mitochondrial inner NEET (MiNT) and the outer mitochondrial membrane (OMM) mitoNEET (mNT) proteins belong to the NEET protein family. This family plays a key role in mitochondrial labile iron and reactive oxygen species (ROS) homeostasis. NEET proteins contain labile [2Fe-2S] clusters which can be transferred to apo-acceptor proteins. In eukaryotes, the biogenesis of [2Fe-2S] clusters occurs within the mitochondria by the iron–sulfur cluster (ISC) system; the clusters are then transferred to [2Fe-2S] proteins within the mitochondria or exported to cytosolic proteins and the cytosolic iron–sulfur cluster assembly (CIA) system. The last step of export of the [2Fe-2S] is not yet fully characterized. Here we show that MiNT interacts with voltage-dependent anion channel 1 (VDAC1), a major OMM protein that connects the intermembrane space with the cytosol and participates in regulating the levels of different ions including mitochondrial labile iron (mLI). We further show that VDAC1 is mediating the interaction between MiNT and mNT, in which MiNT transfers its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol. This MiNT–VDAC1–mNT interaction is shown both experimentally and by computational calculations. Additionally, we show that modifying MiNT expression in breast cancer cells affects the dynamics of mitochondrial structure and morphology, mitochondrial function, and breast cancer tumor growth. Our findings reveal a pathway for the transfer of [2Fe-2S] clusters, which are assembled inside the mitochondria, to the cytosol.more » « less
-
Abstract AAA+ proteases degrade intracellular proteins in a highly specific manner.E. coliClpXP, for example, relies on a C-terminal ssrA tag or other terminal degron sequences to recognize proteins, which are then unfolded by ClpX and subsequently translocated through its axial channel and into the degradation chamber of ClpP for proteolysis. Prior cryo-EM structures reveal that the ssrA tag initially binds to a ClpX conformation in which the axial channel is closed by a pore-2 loop. Here, we show that substrate-free ClpXP has a nearly identical closed-channel conformation. We destabilize this closed-channel conformation by deleting residues from the ClpX pore-2 loop. Strikingly, open-channel ClpXP variants degrade non-native proteins lacking degrons faster than the parental enzymes in vitro but degraded GFP-ssrA more slowly. When expressed inE. coli, these open channel variants behave similarly to the wild-type enzyme in assays of filamentation and phage-Mu plating but resulted in reduced growth phenotypes at elevated temperatures or when cells were exposed to sub-lethal antibiotic concentrations. Thus, channel closure is an important determinant of ClpXP degradation specificity.more » « less
-
NEET proteins are conserved 2Fe-2S proteins that regulate the levels of iron and reactive oxygen species in plant and mammalian cells. Previous studies of seedlings with constitutive expression of AtNEET, or its dominant-negative variant H89C (impaired in 2Fe-2S cluster transfer), revealed that disrupting AtNEET function causes oxidative stress, chloroplast iron overload, activation of iron-deficiency responses, and cell death. Because disrupting AtNEET function is deleterious to plants, we developed an inducible expression system to study AtNEET function in mature plants using a time-course proteomics approach. Here, we report that the suppression of AtNEET cluster transfer function results in drastic changes in the expression of different members of the ferredoxin (Fd), Fd-thioredoxin (TRX) reductase (FTR), and TRX network of Arabidopsis, as well as in cytosolic cluster assembly proteins. In addition, the expression of Yellow Stripe-Like 6 (YSL6), involved in iron export from chloroplasts was elevated. Taken together, our findings reveal new roles for AtNEET in supporting the Fd-TFR-TRX network of plants, iron mobilization from the chloroplast, and cytosolic 2Fe-2S cluster assembly. In addition, we show that the AtNEET function is linked to the expression of glutathione peroxidases (GPXs), which play a key role in the regulation of ferroptosis and redox balance in different organisms.more » « less
An official website of the United States government

