In the recent years, photonic Chern materials have attracted substantial interest as they feature topological edge states that are robust against disorder, promising to realize defect-agnostic integrated photonic crystal slab devices. However, the out-of-plane radiative losses in those photonic Chern slabs has been previously neglected, yielding limited accuracy for predictions of these systems’ topological protection. Here, we develop a general framework for measuring the topological protection in photonic systems, such as in photonic crystal slabs, while accounting for in-plane and out-of-plane radiative losses. Our approach relies on the spectral localizer that combines the position and Hamiltonian matrices of the system to draw a real-picture of the system’s topology. This operator-based approach to topology allows us to use an effective Hamiltonian directly derived from the full-wave Maxwell equations after discretization via finite-elements method (FEM), resulting in the full account of all the system’s physical processes. As the spectral FEM-localizer is constructed solely from FEM discretization of the system’s master equation, the proposed framework is applicable to any physical system and is compatible with commonly used FEM software. Moving forward, we anticipate the generality of the method to aid in the topological classification of a broad range of complex physical systems.
more »
« less
An image analysis method for quantifying precision and disorder in nanofabricated photonic structures
Abstract Disorder is an essential parameter in photonic systems and devices, influencing phenomena such as the robustness of topological photonic states and the Anderson localization of modes in waveguides. We develop and demonstrate a method for both analyzing and visualizing positional, size, and shape disorder in periodic structures such as photonic crystals. This analysis method shows selectivity for disorder type and sensitivity to disorder down to less than 1%. We show that the method can be applied to more complex shapes such as those used in topological photonics. The method provides a powerful tool for process development and quality control, including analyzing the precision of E-Beam Lithography before patterns are transferred; quantifying the precision limits of lithography, deposition, or etch processes; and studying the intentional displacement of individual objects within otherwise periodic arrays.
more »
« less
- PAR ID:
- 10378793
- Date Published:
- Journal Name:
- Nanotechnology
- ISSN:
- 0957-4484
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent studies of disorder or non-Hermiticity induced topological insulators inject new ingredients for engineering topological matter. Here, we consider the effect of purely non-Hermitian disorders, a combination of these two ingredients, in a 1D coupled-cavity array with disordered gain and loss. Topological photonic states can be induced by increasing gain-loss disorder strength with topological invariants carried by localized states in the complex bulk spectra. The system showcases rich phase diagrams and distinct topological states from Hermitian disorders. The non-Hermitian critical behavior is characterized by the biorthogonal localization length of zero-energy edge modes, which diverges at the critical transition point and establishes the bulk-edge correspondence. Furthermore, we show that the bulk topology may be experimentally accessed by measuring the biorthogonal chiral displacement, which can be extracted from a proper Ramsey interferometer that works in both clean and disordered regions. The proposed coupled-cavity photonic setup relies on techniques that have been experimentally demonstrated and, thus, provides a feasible route toward exploring such non-Hermitian disorder driven topological insulators.more » « less
-
In the past decade, the field of topological photonics has gained prominence exhibiting consequential effects in quantum information science, lasing, and large-scale integrated photonics. Many of these topological systems exhibit protected states, enabling robust travel along their edges without being affected by defects or disorder. Nonetheless, conventional topological structures often lack the flexibility for implementing different topological models and for tunability post fabrication. Here, we present a method to implement magnetic-like Hamiltonians supporting topologically protected edge modes on a general-purpose programmable silicon photonic mesh of interferometers. By reconfiguring the lattice onto a two-dimensional mesh of ring resonators with carefully tuned couplings, we show robust edge state transport even in the presence of manufacturing tolerance defects. We showcase the system’s reconfigurability by demonstrating topological insulator lattices of different sizes and shapes and introduce edge and bulk defects to underscore the robustness of the photonic edge states. Our study paves the way for the implementation of photonic topological insulators on general-purpose programmable photonics platforms.more » « less
-
Abstract Topological photonic systems offer light transport that is robust against defects and disorder, promising a new generation of chip‐scale photonic devices and facilitating energy‐efficient on‐chip information routing and processing. However, present quasi one dimensional (1D) designs, such as the Su–Schrieffer–Heeger and Rice–Mele models, support only a limited number of nontrivial phases due to restrictions on dispersion band engineering. Here, a flexible topological photonic lattice on a silicon photonic platform is experimentally demonstrated that realizes multiple topologically nontrivial dispersion bands. By suitably setting the couplings between the 1D waveguides, different lattices can exhibit the transition between multiple different topological phases and allow the independent realization of the corresponding edge states. Heterodyne measurements clearly reveal the ultrafast transport dynamics of the edge states in different phases at a femtosecond scale, validating the designed topological features. The study equips topological models with enriched edge dynamics and considerably expands the scope to engineer unique topological features into photonic, acoustic, and atomic systems.more » « less
-
Photonic topological insulators provide a route for disorder-immune light transport, which holds promise for practical applications. Flexible reconfiguration of topological light pathways can enable high-density photonics routing, thus sustaining the growing demand for data capacity. By strategically interfacing non-Hermitian and topological physics, we demonstrate arbitrary, robust light steering in reconfigurable non-Hermitian junctions, in which chiral topological states can propagate at an interface of the gain and loss domains. Our non-Hermitian–controlled topological state can enable the dynamic control of robust transmission links of light inside the bulk, fully using the entire footprint of a photonic topological insulator.more » « less
An official website of the United States government

