skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Limit shape phase transitions: a merger of arctic circles
Abstract We consider a free fermion formulation of a statistical model exhibiting a limit shape phenomenon. The model is shown to have a phase transition that can be visualized as the merger of two liquid regions – arctic circles. We show that the merging arctic circles provide a space-time resolved picture of the phase transition in lattice QCD known as Gross–Witten–Wadia transition. The latter is a continuous phase transition of the third order. We argue that this transition is universal and is not spoiled by interactions if parity and time-reversal symmetries are preserved. We refer to this universal transition as the merger transition.  more » « less
Award ID(s):
2116767
PAR ID:
10378903
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Physics A: Mathematical and Theoretical
Volume:
55
Issue:
30
ISSN:
1751-8113
Page Range / eLocation ID:
304001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset is derived from DataHawk2 fixed-wind uncrewed aircraft system (UAS) flights that were conducted in the central Arctic Ocean over sea ice during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The data include Coordinated Universal Time (UTC), aircraft position and attitude, atmospheric thermodynamic conditions (pressure, temperature, humidity) from various sensors, approximate brightness temperature of the surface and overlying atmosphere, and estimated horizontal winds. A flight flag is included to indicate when the aircraft is in flight. All the data have been synchronized, quality controlled, and interpolated at 10 hertz (Hz). Data at their native frequency are provided in the A1 level files, and are available in the Arctic Data Center at doi:10.18739/A22Z12Q8X. The purpose of this dataset is to provide information on the thermodynamic and kinematic states of the lower atmosphere, and provide detailed observations of turbulence between the surface and one kilometer. Two flight patterns were implemented during the campaign with the DataHawk2: an orbital profile extending from the ice surface to 1000 meter(m) or cloud base if lower, and a “racetrack” pattern where the aircraft was held at a constant altitude while sampling horizontally between two circles. The latter was used to collect data on the spatial variability of thermodynamic properties over the ice surface, particularly over inhomogeneities in the surface such as leads. Displaying latitude, longitude and altitude will help users to identify the flight pattern. Thermodynamic and kinematic measurements have been validated with radiosonde-based measurements. More information on the data and methods used for synchronization and quality control can be found in de Boer, G. R. Calmer, G. Jozef, J. Cassano, J. Hamilton, D. Lawrence, S. Borenstein, A. Doddi, C. Cox, J. Schmale, A. Preußer and B. Argrow (2021): Observing the Central Arctic Atmosphere and Surface with University of Colorado Uncrewed Aircraft Systems, Nature Scientific Data, in prep. 
    more » « less
  2. Abstract For the first ∼3 yrs after the binary neutron star merger event GW 170817, the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium withn< 0.01 cm−3. We report on observational evidence for an excess of X-ray emission atδt> 900 days after the merger. WithLx≈ 5 × 1038erg s−1at 1234 days, the recently detected X-ray emission represents a ≥3.2σ(Gaussian equivalent) deviation from the universal post-jet-break model that best fits the multiwavelength afterglow at earlier times. In the context ofJetFitafterglow models, current data represent a departure with statistical significance ≥3.1σ, depending on the fireball collimation, with the most realistic models showing excesses at the level of ≥3.7σ. A lack of detectable 3 GHz radio emission suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with the emergence of a new emission component such as synchrotron radiation from a mildly relativistic shock generated by the expanding merger ejecta, i.e., a kilonova afterglow. In this context, we present a set of ab initio numerical relativity binary neutron star (BNS) merger simulations that show that an X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. Radiation from accretion processes on the compact-object remnant represents a viable alternative. Neither a kilonova afterglow nor accretion-powered emission have been observed before, as detections of BNS mergers at this phase of evolution are unprecedented. 
    more » « less
  3. Under rising atmospheric greenhouse gas concentrations, the Arctic exhibits amplified warming relative to the globe. This Arctic amplification is a defining feature of global warming. However, the Arctic is also home to large internal variability, which can make the detection of a forced climate response difficult. Here we use results from seven model large ensembles, which have different rates of Arctic warming and sea ice loss, to assess the time of emergence of anthropogenically-forced Arctic amplification. We find that this time of emergence occurs at the turn of the century in all models, ranging across the models by a decade from 1994–2005. We also assess transient changes in this amplified signal across the 21st century and beyond. Over the 21st century, the projections indicate that the maximum Arctic warming will transition from fall to winter due to sea ice reductions that extend further into the fall. Additionally, the magnitude of the annual amplification signal declines over the 21st century associated in part with a weakening albedo feedback strength. In a simulation that extends to the 23rd century, we find that as sea ice cover is completely lost, there is little further reduction in the surface albedo and Arctic amplification saturates at a level that is reduced from its 21st century value. 
    more » « less
  4. Abstract As the Arctic continues to warm faster than the rest of the planet, evidence mounts that the region is experiencing unprecedented environmental change. The hydrological cycle is projected to intensify throughout the twenty-first century, with increased evaporation from expanding open water areas and more precipitation. The latest projections from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) point to more rapid Arctic warming and sea-ice loss by the year 2100 than in previous projections, and consequently, larger and faster changes in the hydrological cycle. Arctic precipitation (rainfall) increases more rapidly in CMIP6 than in CMIP5 due to greater global warming and poleward moisture transport, greater Arctic amplification and sea-ice loss and increased sensitivity of precipitation to Arctic warming. The transition from a snow- to rain-dominated Arctic in the summer and autumn is projected to occur decades earlier and at a lower level of global warming, potentially under 1.5 °C, with profound climatic, ecosystem and socio-economic impacts. 
    more » « less
  5. In this paper, we systematically study the evolution of the Universe within the framework of a modified loop quantum cosmological model (mLQC-I) using various inflationary potentials, including chaotic, Starobinsky, generalized Starobinsky, polynomials of the first and second kinds, generalized T-models and natural inflation. In all these models, the big bang singularity is replaced by a quantum bounce, and the evolution of the Universe, both before and after the bounce, is universal and weakly dependent on the inflationary potentials, as long as the evolution is dominated by the kinetic energy of the inflaton at the bounce. In particular, the pre-bounce evolution can be universally divided into three different phases: pre-bouncing, pre-transition, and pre-de Sitter. The pre-bouncing phase occurs immediately before the quantum bounce, during which the evolution of the Universe is dominated by the kinetic energy of the inflaton. Thus, the equation of state of the inflaton is about one, w(ϕ)≃1. Soon, the inflation potential takes over, so w(ϕ) rapidly falls from one to negative one. This pre-transition phase is very short and quickly turns into the pre-de Sitter phase, whereby the effective cosmological constant of Planck size takes over and dominates the rest of the contracting phase. Throughout the entire pre-bounce regime, the evolution of both the expansion factor and the inflaton can be approximated by universal analytical solutions, independent of the specific inflation potentials. 
    more » « less