skip to main content

Title: Stigma shape shifting in sages ( Salvia : Lamiaceae): hummingbirds guided the evolution of New World floral features
Abstract A fundamental question in evolutionary biology is how clades of organisms exert influence on one another. The evolution of the flower and subsequent plant/pollinator coevolution are major innovations that have operated in flowering plants to promote species radiations at a variety of taxonomic levels in the Neotropics. Here we test the hypothesis that pollination by Neotropical endemic hummingbirds drove the evolution of two unique stigma traits in correlation with other floral traits in New World Salvia (Lamiaceae). We examined morphometric shapes of stigma lobing across 400 Salvia spp., scored presence and absence of a stigma brush across Salvia, and used a suite of phylogenetic comparative methods to detect shape regime shifts, correlation of trait shifts with BayesTraits and phylogenetic generalized least square regressions, and the influence of scored pollinators on trait evolution using OUwie. We found that a major Neotropical clade of Salvia evolved a correlated set of stigma features, with a longer upper stigma lobe and stigmatic brush, following an early shift to hummingbird pollination. Evolutionary constraint is evident as subsequent shifts to bee pollination largely retained these two features. Our results support the hypothesis that hummingbirds guided the correlative shifts in corolla, anther connective, style and stigma shape in Neotropical Salvia, despite repeated shifts back to bee pollination.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Botanical Journal of the Linnean Society
Page Range / eLocation ID:
428 to 448
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background and Aims

    Few studies of angiosperms have focused on androecial evolution in conjunction with evolutionary shifts in corolla morphology and pollinator relationships. The Western Hemisphere clade of Justiciinae (Acanthaceae) presents the rare opportunity to examine remarkable diversity in staminal morphology. We took a phylogenetically informed approach to examine staminal diversity in this hypervariable group and asked whether differences in anther thecae separation is associated with phylogenetically informed patterns of variation in corolla morphology. We further discuss evidence for associations between anther diversity and pollinators in this lineage.


    For the Dianthera/Sarotheca/Plagiacanthus (DSP) clade of Western Hemisphere Justiciinae, we characterized floral diversity based on a series of corolla measurements and using a model-based clustering approach. We then tested for correlations between anther thecae separation and corolla traits, and for shifts in trait evolution, including evidence for convergence.

    Key Results

    There is evolutionary vagility in corolla and anther traits across the DSP clade with little signal of phylogenetic constraint. Floral morphology clusters into four distinct groups that are, in turn, strongly associated with anther thecae separation, a novel result in Acanthaceae and, to our knowledge, across flowering plants. These cluster groups are marked by floral traits that strongly point to associations with pollinating animals. Specifically, species that are known or likely to be hummingbird pollinated have stamens with parallel thecae, whereas those that are likely bee or fly pollinated have stamens with offset, divergent thecae.


    Our results suggest that anther thecae separation is likely under selection in concert with other corolla characters. Significant morphological shifts detected by our analyses corresponded to putative shifts from insect to hummingbird pollination. Results from this study support the hypothesis that floral structures function in an integrated manner and are likely subject to selection as a suite. Further, these changes can be hypothesized to represent adaptive evolution.

    more » « less
  2. Abstract

    Why and how organismal lineages radiate is commonly studied through either assessing abiotic factors (biogeography, geomorphological processes, and climate) or biotic factors (traits and interactions). Despite increasing awareness that both abiotic and biotic processes may have important joint effects on diversification dynamics, few attempts have been made to quantify the relative importance and timing of these factors, and their potentially interlinked direct and indirect effects, on lineage diversification. We here combine assessments of historical biogeography, geomorphology, climatic niche, vegetative, and floral trait evolution to test whether these factors jointly, or in isolation, explain diversification dynamics of a Neotropical plant clade (Merianieae, Melastomataceae). After estimating ancestral areas and the changes in niche and trait disparity over time, we employ Phylogenetic Path Analyses as a synthesis tool to test eleven hypotheses on the individual direct and indirect effects of these factors on diversification rates. We find strongest support for interlinked effects of colonization of the uplifting Andes during the mid-Miocene and rapid abiotic climatic niche evolution in explaining a burst in diversification rate in Merianieae. Within Andean habitats, later increases in floral disparity allowed for the exploitation of wider pollination niches (i.e., shifts from bee to vertebrate pollinators), but did not affect diversification rates. Our approach of including both vegetative and floral trait evolution, rare in assessments of plant diversification in general, highlights that the evolution of woody habit and larger flowers preceded the colonization of the Andes, but was likely critical in enabling the rapid radiation in montane environments. Overall, and in concert with the idea that ecological opportunity is a key element of evolutionary radiations, our results suggest that a combination of rapid niche evolution and trait shifts was critical for the exploitation of newly available niche space in the Andes in the mid-Miocene. Further, our results emphasize the importance of incorporating both abiotic and biotic factors into the same analytical framework if we aim to quantify the relative and interlinked effects of these processes on diversification.

    more » « less
  3. Summary

    The evolution of hummingbird pollination is common across angiosperms throughout the Americas, presenting an opportunity to examine convergence in both traits and environments to better understand how complex phenotypes arise. Here we examine independent shifts from bee to hummingbird pollination in the Neotropical spiral gingers (Costus) and address common explanations for the prevalence of transitions from bee to hummingbird pollination.

    We use floral traits of species with observed pollinators to predict pollinators of unobserved species and reconstruct ancestral pollination states on a well‐resolved phylogeny. We examine whether independent transitions evolve towards the same phenotypic optimum and whether shifts to hummingbird pollination correlate with elevation or climate.

    Traits predicting hummingbird pollination include small flower size, brightly colored floral bracts and the absence of nectar guides. We find many shifts to hummingbird pollination and no reversals, a single shared phenotypic optimum across hummingbird flowers, and no association between pollination and elevation or climate.

    Evolutionary shifts to hummingbird pollination inCostusare highly convergent and directional, involve a surprising set of traits when compared with other plants with analogous transitions and refute the generality of several common explanations for the prevalence of transitions from bee to hummingbird pollination.

    more » « less
  4. Summary

    Evolutionary shifts from bee to vertebrate pollination are common in tropical mountains. Reduction in bee pollination efficiency under adverse montane weather conditions was proposed to drive these shifts. Although pollinator shifts are central to the evolution and diversification of angiosperms, we lack experimental evidence of the ecological processes underlying such shifts.

    Here, we combine phylogenetic and distributional data for 138 species of the Neotropical plant tribe Merianieae (Melastomataceae) with pollinator observations of 11 and field pollination experiments of six species to test whether the mountain environment may indeed drive such shifts.

    We demonstrate that shifts from bee to vertebrate pollination coincided with occurrence at high elevations. We show that vertebrates were highly efficient pollinators even under the harsh environmental conditions of tropical mountains, whereas bee pollination efficiency was lowered significantly through reductions in flower visitation rates. Furthermore, we show that pollinator shifts in Merianieae coincided with the final phases of the Andean uplift and were contingent on adaptive floral trait changes to alternative rewards and mechanisms facilitating pollen dispersal.

    Our results provide evidence that abiotic environmental conditions (i.e. mountain climate) may indeed reduce the efficiency of a plant clade’s ancestral pollinator group and correlate with shifts to more efficient new pollinators.

    more » « less
  5. Summary

    Evolution of complex phenotypes depends on the adaptive importance of individual traits, and the developmental changes required to modify traits. Floral syndromes are complex adaptations to pollinators that include color, nectar, and shape variation. Hummingbird‐adapted flowers have evolved a remarkable number of times from bee‐adapted ancestors inPenstemon, and previous work demonstrates that color over shape better distinguishes bee from hummingbird syndromes. Here, we examined the relative importance of nectar volume and nectary development in definingPenstemonpollination syndromes.

    We tested the evolutionary association of nectar volume and nectary area with pollination syndrome across 19Penstemonspecies. In selected species, we assessed cellular‐level processes shaping nectary size. Within a segregating population from an intersyndrome cross, we assessed trait correlations between nectar volume, nectary area, and the size of stamens on which nectaries develop.

    Nectar volume and nectary area displayed an evolutionary association with pollination syndrome. These traits were correlated within a genetic cross, suggesting a mechanistic link. Nectary area evolution involves parallel processes of cell expansion and proliferation.

    Our results demonstrate that changes to nectary patterning are an important contributor to pollination syndrome diversity and provide further evidence that repeated origins of hummingbird adaptation involve parallel developmental processes inPenstemon.

    more » « less